276 research outputs found

    The International Space Station (ISS) Port 1 (P1) External Active Thermal Control System (EATCS) Ammonia Leak

    Get PDF
    From 2011 to 2017, the crew onboard the International Space Station (ISS) was at risk of dire consequences due to an external ammonia leak. Ammonia is used in the External Active Thermal Control System (EATCS) to cool the pressurized modules and external electrical systems. Engineers at NASA's Johnson Space Center (JSC) initially detected the leak in one of two cooling loops by monitoring the system ammonia inventory decay over time. White flakes seen on High Definition (HD) cameras were also thought to be associated with the leakage but not confirmed. Initially, the leak was small enough that the ammonia inventory and system operations were not in jeopardy. However, the leak began to accelerate to the point where troubleshooting and corrective action were vital to the sustainability of the ISS. Therefore, it became imperative that the leak be located and repaired for ISS operations to continue. No tools were readily available on the ISS to locate such a leak when it was initially detected, however NASA engineers were already in the process of developing a new device for this purpose called the Robotic External Leak Locator (RELL). The RELL is a robotic instrument package with a mass spectrometer and an ion pressure gauge. Initial checkout operations with RELL happened to coincide with the increasing leak, and ammonia vapors were measured around the P1 EATCS Radiator #3 flexible jumper hoses. The leak stopped after the radiator and its flexible hoses were remotely isolated from the loop and the ammonia from the isolated segment was vented to space. Astronauts conducted a spacewalk that successfully removed the hoses, which were returned to ground for further investigation. The purpose of this paper is to review the leak detection and isolation efforts, investigation results, lessons learned and the recovery plan

    The International Space Station (ISS) Port 1 (P1) External Active Thermal Control System (EATCS) Ammonia Leak

    Get PDF
    Ammonia is used in the Starboard 1 (S1) and Port 1 (P1) External Active Thermal Control System (EATCS) to cool the pressurized modules, and some of the external electrical power distribution hardware. Leaks that develop in these critical cooling systems that deplete in-line tanks can ultimately result in loss of cooling, which can have devastating impacts to the mission, science and crew onboard the ISS. A slow ammonia leak was initially observed from the P1 EATCS in 2011, but later in 2013 the leak rate began to accelerate. The ammonia inventory eventually began to decay exponentially, raising concerns that the inventory could drop to levels where the system would not be operational.The Robotic External Leak Locator (RELL) was built and launched to the ISS to detect and help locate ammonia leaks using the ISS Robotic Arm and remote ground operator control without constant crew involvement. RELL pinpointed the ammonia leak to the two flexible jumper hose assemblies connecting one of two fluid loops in one of the three deployable radiators to the P1 EATCS. The ammonia inside the two hose assemblies and that radiator fluid loop was isolated and vented to space in 2017. This stopped the leak and an Extravehicular Activity was conducted to remove the two hose assemblies so they could be returned to ground for further Test, Teardown and Evaluation (TT&E). The purpose of this presentation is to discuss this leakage scenario and the TT&E efforts

    ACCOMMODATING MIXED-SEVERITY FIRE TO RESTORE AND MAINTAIN ECOSYSTEM INTEGRITY WITH A FOCUS ON THE SIERRA NEVADA OF CALIFORNIA, USA

    Get PDF
    Existing fire policy encourages the maintenance of ecosystem integrity in fire management, yet this is difficult to implement on lands managed for competing economic, human safety, and air quality concerns. We discuss a fire management approach in the mid-elevations of the Sierra Nevada, California, USA, that may exemplify similar challenges in other fire-adapted regions of the western USA. We also discuss how managing for pyrodiversity through mixed-severity fires can promote ecosystem integrity in Sierran mixed conifer and ponderosa pine (Pinus ponderosa Laws) forests. To illustrate, we show how coarse-filter (landscape-level) and complementary fine-filter (species-level) approaches can enhance forest management and conservation biology objectives as related to wildfire management. At the coarse-filter level, pyrodiverse mixed-severity fires provide landscape heterogeneity. Species and ecosystem characteristics associated with pyrodiversity can be maintained or enhanced by accommodating moderately severe fires, which hasten restoration by recreating a complex vegetation mosaic otherwise at risk from suppression. At the fine-filter level, managers can select focal species and species of conservation concern based on the degree to which those species depend on fire and accommodate their specific conservation needs. The black-backed woodpecker (Picoides arcticus [Swainson, 1832]) is an ideal focal species for monitoring the ecological integrity of forests restored through mixed-severity fire, and the California spotted owl (Strix occidentalis occidentalis [Xantus de Vesey, 1860]) is a species of conservation concern that uses post-fire habitat mosaics and is particularly vulnerable to logging. We suggest a comprehensive approach that integrates wildland fire for ecosystem integrity and species viability with strategic deployment of fire suppression and ecologically based restoration of pyrodiverse landscapes. Our approach would accomplish fire management goals while simultaneously maintaining biodiversity

    SPIRITS 15c and SPIRITS 14buu: Two Obscured Supernovae in the Nearby Star-Forming Galaxy IC 2163

    Get PDF
    SPIRITS---SPitzer InfraRed Intensive Transients Survey---is an ongoing survey of nearby galaxies searching for infrared (IR) transients with Spitzer/IRAC. We present the discovery and follow-up observations of one of our most luminous (M[4.5]=17.1±0.4M_{[4.5]} = -17.1\pm0.4 mag, Vega) and red ([3.6][4.5]=3.0±0.2[3.6] - [4.5] = 3.0 \pm 0.2 mag) transients, SPIRITS 15c. The transient was detected in a dusty spiral arm of IC 2163 (D35.5D\approx35.5 Mpc). Pre-discovery ground-based imaging revealed an associated, shorter-duration transient in the optical and near-IR (NIR). NIR spectroscopy showed a broad (8400\approx 8400 km s1^{-1}), double-peaked emission line of He I at 1.083μ1.083 \mum, indicating an explosive origin. The NIR spectrum of SPIRITS 15c is similar to that of the Type IIb SN 2011dh at a phase of 200\approx 200 days. Assuming AV=2.2A_V = 2.2 mag of extinction in SPIRITS 15c provides a good match between their optical light curves. The IR light curves and the extreme [3.6][4.5][3.6]-[4.5] color cannot be explained using only a standard extinction law. Another luminous (M4.5=16.1±0.4M_{4.5} = -16.1\pm0.4 mag) event, SPIRITS 14buu, was serendipitously discovered in the same galaxy. The source displays an optical plateau lasting 80\gtrsim 80 days, and we suggest a scenario similar to the low-luminosity Type IIP SN 2005cs obscured by AV1.5A_V \approx 1.5 mag. Other classes of IR-luminous transients can likely be ruled out in both cases. If both events are indeed SNe, this may suggest 18%\gtrsim 18\% of nearby core-collapse SNe are missed by currently operating optical surveys.Comment: 19 pages, 7 Figures, 4 Table

    CMB observations from the CBI and VSA: A comparison of coincident maps and parameter estimation methods

    Full text link
    We present coincident observations of the Cosmic Microwave Background (CMB) from the Very Small Array (VSA) and Cosmic Background Imager (CBI) telescopes. The consistency of the full datasets is tested in the map plane and the Fourier plane, prior to the usual compression of CMB data into flat bandpowers. Of the three mosaics observed by each group, two are found to be in excellent agreement. In the third mosaic, there is a 2 sigma discrepancy between the correlation of the data and the level expected from Monte Carlo simulations. This is shown to be consistent with increased phase calibration errors on VSA data during summer observations. We also consider the parameter estimation method of each group. The key difference is the use of the variance window function in place of the bandpower window function, an approximation used by the VSA group. A re-evaluation of the VSA parameter estimates, using bandpower windows, shows that the two methods yield consistent results.Comment: 10 pages, 6 figures. Final version. Accepted for publication in MNRA

    Natural and Induced Environment around the International Space Station (ISS) as Observed during On-Orbit Operations of the Robotic External Leak Locator (RELL)

    Get PDF
    Final Document is attached. The Robotic External Leak Locator (RELL) was deployed to the International Space Station (ISS) with the goal of detecting and locating on-orbit leaks around the ISS. Three activities to investigate and corroborate the background natural and induced environment of ISS were performed with RELL as part of the on-orbit validation and demonstration conducted in November December 2016. The first demonstration activity pointed RELL directly in the ram and wake directions for one orbit each. The ram facing measurements showed high partial pressure for mass-to-charge ratio 16, corresponding to atomic oxygen (AO), as well as the presence of mass-to-charge ratio 17. RELLs view in the wake-facing direction included more ISS structure and several Environmental Control and Life Support System (ECLSS) on-orbit vents were detected, including the Carbon Dioxide Removal Assembly (CDRA), Russian segment ECLSS, and Sabatier vents. The second demonstration activity pointed RELL at three faces of the P1 Truss segment. Effluents from ECLSS and European Space Agency (ESA) Columbus module on-orbit vents were detected by RELL. The partial pressures of mass-to-charge ratios 17 and 18 remained consistent with the first on-orbit activity of characterizing the natural environment. The third demonstration activity involved RELL scanning an Active Thermal Control System (ATCS) radiator. Three locations along the radiator were scanned and the angular position of RELL with respect to the radiator was varied. Mass-to-charge ratios 16 and 17 both had upward shifts in partial pressure when pointing toward the Radiator Beam Valve Modules (RBVMs), likely corresponding to a known, small ammonia leak

    Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample

    Get PDF
    The spectroscopic Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) galaxy sample represents the final set of galaxies observed using the original SDSS target selection criteria. We analyse the clustering of galaxies within this sample, including both the Luminous Red Galaxy (LRG) and Main samples, and also include the 2-degree Field Galaxy Redshift Survey (2dFGRS) data. Baryon Acoustic Oscillations are observed in power spectra measured for different slices in redshift; this allows us to constrain the distance--redshift relation at multiple epochs. We achieve a distance measure at redshift z=0.275, of r_s(z_d)/D_V(0.275)=0.1390+/-0.0037 (2.7% accuracy), where r_s(z_d) is the comoving sound horizon at the baryon drag epoch, D_V(z)=[(1+z)^2D_A^2cz/H(z)]^(1/3), D_A(z) is the angular diameter distance and H(z) is the Hubble parameter. We find an almost independent constraint on the ratio of distances D_V(0.35)/D_V(0.2)=1.736+/-0.065, which is consistent at the 1.1sigma level with the best fit Lambda-CDM model obtained when combining our z=0.275 distance constraint with the WMAP 5-year data. The offset is similar to that found in previous analyses of the SDSS DR5 sample, but the discrepancy is now of lower significance, a change caused by a revised error analysis and a change in the methodology adopted, as well as the addition of more data. Using WMAP5 constraints on Omega_bh^2 and Omega_ch^2, and combining our BAO distance measurements with those from the Union Supernova sample, places a tight constraint on Omega_m=0.286+/-0.018 and H_0 = 68.2+/-2.2km/s/Mpc that is robust to allowing curvature and non-Lambda dark energy. This result is independent of the behaviour of dark energy at redshifts greater than those probed by the BAO and supernova measurements. (abridged)Comment: 22 pages, 16 figures, minor changes to match version published in MNRA
    corecore