63 research outputs found
Computational advances in gravitational microlensing: a comparison of CPU, GPU, and parallel, large data codes
To assess how future progress in gravitational microlensing computation at
high optical depth will rely on both hardware and software solutions, we
compare a direct inverse ray-shooting code implemented on a graphics processing
unit (GPU) with both a widely-used hierarchical tree code on a single-core CPU,
and a recent implementation of a parallel tree code suitable for a CPU-based
cluster supercomputer. We examine the accuracy of the tree codes through
comparison with a direct code over a much wider range of parameter space than
has been feasible before. We demonstrate that all three codes present
comparable accuracy, and choice of approach depends on considerations relating
to the scale and nature of the microlensing problem under investigation. On
current hardware, there is little difference in the processing speed of the
single-core CPU tree code and the GPU direct code, however the recent plateau
in single-core CPU speeds means the existing tree code is no longer able to
take advantage of Moore's law-like increases in processing speed. Instead, we
anticipate a rapid increase in GPU capabilities in the next few years, which is
advantageous to the direct code. We suggest that progress in other areas of
astrophysical computation may benefit from a transition to GPUs through the use
of "brute force" algorithms, rather than attempting to port the current best
solution directly to a GPU language -- for certain classes of problems, the
simple implementation on GPUs may already be no worse than an optimised
single-core CPU version.Comment: 11 pages, 4 figures, accepted for publication in New Astronom
Lineage‐based functional types: characterising functional diversity to enhance the representation of ecological behaviour in Land Surface Models
Process‐based vegetation models attempt to represent the wide range of trait variation in biomes by grouping ecologically similar species into plant functional types (PFTs). This approach has been successful in representing many aspects of plant physiology and biophysics but struggles to capture biogeographic history and ecological dynamics that determine biome boundaries and plant distributions. Grass‐dominated ecosystems are broadly distributed across all vegetated continents and harbour large functional diversity, yet most Land Surface Models (LSMs) summarise grasses into two generic PFTs based primarily on differences between temperate C3 grasses and (sub)tropical C4 grasses. Incorporation of species‐level trait variation is an active area of research to enhance the ecological realism of PFTs, which form the basis for vegetation processes and dynamics in LSMs. Using reported measurements, we developed grass functional trait values (physiological, structural, biochemical, anatomical, phenological, and disturbance‐related) of dominant lineages to improve LSM representations. Our method is fundamentally different from previous efforts, as it uses phylogenetic relatedness to create lineage‐based functional types (LFTs), situated between species‐level trait data and PFT‐level abstractions, thus providing a realistic representation of functional diversity and opening the door to the development of new vegetation models
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
- …