409 research outputs found

    Characterization of yeasts isolated from parmigiano reggiano cheese natural whey starter: From spoilage agents to potential cell factories for whey valorization

    Get PDF
    Whey is the main byproduct of the dairy industry and contains sugars (lactose) and proteins (especially serum proteins and, at lesser extent, residual caseins), which can be valorized by the fermentative action of yeasts. In the present study, we characterized the spoilage yeast population inhabiting natural whey starter (NWS), the undefined starter culture of thermophilic lactic acid bacteria used in Parmigiano Reggiano (PR) cheesemaking, and evaluated thermotolerance, mating type, and the aptitude to produce ethanol and bioactive peptides from whey lactose and proteins, respectively, in a selected pool of strains. PCR-RFLP assay of ribosomal ITS regions and phylogenetic analysis of 26S rDNA D1/D2 domains showed that PR NWS yeast population consists of the well-documented Kluyveromyces marxianus, as well as of other species (Saccharomyces cerevisiae, Wickerhamiella pararugosa, and Torulaspora delbrueckii), with multiple biotypes scored within each species as demonstrated by (GTG)5-based MSP-PCR. Haploid and diploid K. marxianus strains were identified through MAT genotyping, while thermotolerance assay allowed the selection of strains suitable to grow up to 48◩C. In whey fermentation trials, one thermotolerant strain was suitable to release ethanol with a fermentation efficiency of 86.5%, while another candidate was able to produce the highest amounts of both ethanol and bioactive peptides with potentially anti-hypertensive function. The present work demonstrated that PR NWS is a reservoir of ethanol and bioactive peptides producer yeasts, which can be exploited to valorize whey, in agreement with the principles of circularity and sustainability

    Mitochondrial genomes of giant deers suggest their late survival in Central Europe

    No full text
    The giant deer Megaloceros giganteus is among the most fascinating Late Pleistocene Eurasian megafauna that became extinct at the end of the last ice age. Important questions persist regarding its phylogenetic relationship to contemporary taxa and the reasons for its extinction. We analyzed two large ancient cervid bone fragments recovered from cave sites in the Swabian Jura (Baden-WĂŒrttemberg, Germany) dated to 12,000 years ago. Using hybridization capture in combination with next generation sequencing, we were able to reconstruct nearly complete mitochondrial genomes from both specimens. Both mtDNAs cluster phylogenetically with fallow deer and show high similarity to previously studied partial Megaloceros giganteus DNA from Kamyshlov in western Siberia and Killavullen in Ireland. The unexpected presence of Megaloceros giganteus in Southern Germany after the Ice Age suggests a later survival in Central Europe than previously proposed. The complete mtDNAs provide strong phylogenetic support for a Dama-Megaloceros clade. Furthermore, isotope analyses support an increasing competition between giant deer, red deer, and reindeer after the Last Glacial Maximum, which might have contributed to the extinction of Megaloceros in Central Europe

    Mitotic Rounding Alters Cell Geometry to Ensure Efficient Bipolar Spindle Formation

    Get PDF
    Accurate animal cell division requires precise coordination of changes in the structure of the microtubule-based spindle and the actin-based cell cortex. Here, we use a series of perturbation experiments to dissect the relative roles of actin, cortical mechanics, and cell shape in spindle formation. We find that, whereas the actin cortex is largely dispensable for rounding and timely mitotic progression in isolated cells, it is needed to drive rounding to enable unperturbed spindle morphogenesis under conditions of confinement. Using different methods to limit mitotic cell height, we show that a failure to round up causes defects in spindle assembly, pole splitting, and a delay in mitotic progression. These defects can be rescued by increasing microtubule lengths and therefore appear to be a direct consequence of the limited reach of mitotic centrosome-nucleated microtubules. These findings help to explain why most animal cells round up as they enter mitosis

    Analysis of serious games implementation for project management courses

    Get PDF
    Previous researches in pedagogy and project management have already underlined the positive contribution of serious games on project management courses. However, the empirical outcome of their studies has not been translated yet into functional and technical specifications for "serious games" designers. Our study aims at obtaining a set of technical and functional design guidelines for serious game scenario editors to be used in large classes of project management students. We have conceived a framework to assess the influence of different serious games components over student's perceived acquired competency. Such frameworks will allow us to develop a software module for reflective learning, which is meant to extend theory of serious games design

    Intermediate phase, network demixing, boson and floppy modes, and compositional trends in glass transition temperatures of binary AsxS1-x system

    Full text link
    The structure of binary As_xS_{1-x} glasses is elucidated using modulated-DSC, Raman scattering, IR reflectance and molar volume experiments over a wide range (8%<x<41%) of compositions. We observe a reversibility window in the calorimetric experiments, which permits fixing the three elastic phases; flexible at x<22.5%, intermediate phase (IP) in the 22.5%<x<29.5% range, and stressed-rigid at x>29.5%. Raman scattering supported by first principles cluster calculations reveal existence of both pyramidal (PYR, As(S1/2)3) and quasi-tetrahedral(QT, S=As(S1/2)3) local structures. The QT unit concentrations show a global maximum in the IP, while the concentration of PYR units becomes comparable to those of QT units in the phase, suggesting that both these local structures contribute to the width of the IP. The IP centroid in the sulfides is significantly shifted to lower As content x than in corresponding selenides, a feature identified with excess chalcogen partially segregating from the backbone in the sulfides, but forming part of the backbone in selenides. These ideas are corroborated by the proportionately larger free volumes of sulfides than selenides, and the absence of chemical bond strength scaling of Tgs between As-sulfides and As-selenides. Low-frequency Raman modes increase in scattering strength linearly as As content x of glasses decreases from x = 20% to 8%, with a slope that is close to the floppy mode fraction in flexible glasses predicted by rigidity theory. These results show that floppy modes contribute to the excess vibrations observed at low frequency. In the intermediate and stressed rigid elastic phases low-frequency Raman modes persist and are identified as boson modes. Some consequences of the present findings on the optoelectronic properties of these glasses is commented upon.Comment: Accepted for PR

    Absorption Engineering in an Ultrasubwavelength Quantum System

    Get PDF
    Many photonic and plasmonic structures have been proposed to achieve ultrasubwavelength light confinement across the electromagnetic spectrum. Notwithstanding this effort, however, the efficient funneling of external radiation into nanoscale volumes remains problematic. Here, we demonstrate a photonic concept that fulfills the seemingly incompatible requirements for both strong electromagnetic confinement and impedance matching to free space. Our architecture consists of antenna-coupled meta-atom resonators that funnel up to 90% of the incident radiation into an ultrasubwavelength semiconductor quantum well absorber of volume V = λ310–6. A significant fraction of the coupled electromagnetic energy is used to excite the electronic transitions in the quantum well, with a photon absorption efficiency 550 times larger than the intrinsic value of the electronic dipole. This system opens important perspectives for ultralow dark current quantum detectors and for the study of light–matter interaction in the extreme regimes of electronic and photonic confinement

    The Mediterranean ocean Forecasting System

    Get PDF
    The Mediterranean Forecasting System (MFS) is operationally working since year 2000 and it is continuously improved in the frame of international projects. The system is part of the Mediterranean Operational Oceanography Network-MOON and MFS is coordinated and operated by the Italian Group of Operational Oceanography (GNOO). The latest upgrades and integration to MFS has been undertaken in the EU-MERSEA and BOSS4GMES Projects. Since October 2005 ten days forecasts are produced daily as well as 15 days of analyses once a week. The daily forecast and weekly analysis data are available in real time to the users through a dedicated ftp service and every day a web bulletin is published on the web site (http://gnoo.bo.ingv.it/mfs). A continuous evaluation in near real time of the forecasts and analyses produced by MFS has been developed in order to continuously verify the system and to provide useful information to the users. The R&D is focused on different aspects of the system. A new basin scale ocean model nested with operational MERCATOR global model has been developed and run in real time operationally for a test period together with a new assimilation scheme based on the 3DVAR. This system is now under evaluation. Important activities have been carried out to: implement and test a Bayesian methodologies of Ensemble and Super-Ensemble for the Mediterranean sea; produce 20 years of re-analysis; re-formulate the air-sea fluxes bulk formulae; develop dedicated products to support particular request of end users such as: indicators, real time oil spill forecasting, search & rescue

    Differential Spatial Expression and Subcellular Localization of CtBP Family Members in Rodent Brain

    Get PDF
    C-terminal binding proteins (CtBPs) are well-characterized nuclear transcriptional co-regulators. In addition, cytoplasmic functions were discovered for these ubiquitously expressed proteins. These include the involvement of the isoform CtBP1-S/BARS50 in cellular membrane-trafficking processes and a role of the isoform RIBEYE as molecular scaffolds in ribbons, the presynaptic specializations of sensory synapses. CtBPs were suggested to regulate neuronal differentiation and they were implied in the control of gene expression during epileptogenesis. However, the expression patterns of CtBP family members in specific brain areas and their subcellular localizations in neurons in situ are largely unknown. Here, we performed comprehensive assessment of the expression of CtBP1 and CtBP2 in mouse brain at the microscopic and the ultra-structural levels using specific antibodies. We quantified and compared expression levels of both CtBPs in biochemically isolated brain fractions containing cellular nuclei or synaptic compartment. Our study demonstrates differential regional and subcellular expression patterns for the two CtBP family members in brain and reveals a previously unknown synaptic localization for CtBP2 in particular brain regions. Finally, we propose a mechanism of differential synapto-nuclear targeting of its splice variants CtBP2-S and CtBP2-L in neurons
    • 

    corecore