41 research outputs found

    Decreased home cage movement and oromotor impairments in adult \u3ci\u3eFmr1\u3c/i\u3e-KO mice

    Get PDF
    Fragile X syndrome (FXS) is a common inherited disorder that significantly impacts family and patient day-to-day living across the entire lifespan. The childhood and adolescent behavioral consequences of FXS are well-appreciated. However, there are significantly fewer studies (except those examining psychiatric comorbidities) assessing behavioral phenotypes seen in adults with FXS. Mice engineered with a genetic lesion of Fmr1 recapitulate important molecular and neuroanatomical characteristics of FXS, and provide a means to evaluate adult behavioral phenotypes associated with FXS. We give the first description of baseline behaviors including feeding, drinking, movement, and their circadian rhythms; all observed over 16 consecutive days following extensive environmental habituation in adult Fmr1-KO mutant mice. We find no genotypic changes in mouse food ingestion, feeding patterns, metabolism, or circadian patterns of movement, feeding, and drinking. After habituation, Fmr1-KO mice demonstrate significantly less daily movement during their active phase (the dark cycle). However, Fmr1-KO mice have more bouts of activity during the light cycle compared to wildtypes. In addition, Fmr1-KO mice demonstrate significantly less daily water ingestion during the circadian dark cycle, and this reduction in water intake is accompanied by a decrease in the amount of water ingested per lick. The observed water ingestion and circadian phenotypes noted in Fmr1-KO mice recapitulate known clinical aspects previously described in FXS. The finding of decreased movement in Fmr1-KO mice is novel, and suggests a dissociation between baseline and novelty-evoked activity for Fmr1-KO mice

    A Low-Cost, Reliable, High-Throughput System for Rodent Behavioral Phenotyping in a Home Cage Environment

    Get PDF
    Inexpensive, high-throughput, low maintenance systems for precise temporal and spatial measurement of mouse home cage behavior (including movement, feeding, and drinking) are required to evaluate products from large scale pharmaceutical design and genetic lesion programs. These measurements are also required to interpret results from more focused behavioral assays. We describe the design and validation of a highly-scalable, reliable mouse home cage behavioral monitoring system modeled on a previously described, one-ofa- kind system [1]. Mouse position was determined by solving static equilibrium equations describing the force and torques acting on the system strain gauges; feeding events were detected by a photobeam across the food hopper, and drinking events were detected by a capacitive lick sensor. Validation studies show excellent agreement between mouse position and drinking events measured by the system compared with video-based observation – a gold standard in neuroscience

    Impact of serotonin 2C receptor null mutation on physiology and behavior associated with nigrostriatal dopamine pathway function

    Get PDF
    The impact of serotonergic neurotransmission on brain dopaminergic pathways has substantial relevance to many neuropsychiatric disorders. A particularly prominent role has been ascribed to the inhibitory effects of serotonin 2C receptor (5-HT2CR) activation on physiology and behavior mediated by the mesolimbic dopaminergic pathway, particularly in the terminal region of the nucleus accumbens. The influence of this receptor subtype on functions mediated by the nigrostriatal dopaminergic pathway is less clear. Here we report that a null mutation eliminating expression of 5-HT2CRs produces marked alterations in the activity and functional output of this pathway. 5-HT2CR mutant mice displayed increased activity of substantia nigra pars compacta (SNc) dopaminergic neurons, elevated baseline extracellular dopamine concentrations in the dorsal striatum (DSt), alterations in grooming behavior, and enhanced sensitivity to the stereotypic behavioral effects of D-amphetamine and GBR 12909. These psychostimulant responses occurred in the absence of phenotypic differences in drug-induced extracellular dopamine concentration, suggesting a phenotypic alteration in behavioral responses to released dopamine. This was further suggested by enhanced behavioral responses of mutant mice to the D1 receptor agonist SKF 81297. Differences in DSt D1 or D2 receptor expression were not found, nor were differences in medium spiny neuron firing patterns or intrinsic membrane properties following dopamine stimulation. We conclude that 5-HT2CRs regulate nigrostriatal dopaminergic activity and function both at SNc dopaminergic neurons and at a locus downstream of the DSt.peer-reviewe

    Age‐related changes in cerebellar and hypothalamic function accompany non‐microglial immune gene expression, altered synapse organization, and excitatory amino acid neurotransmission deficits

    Get PDF
    We describe age-related molecular and neuronal changes that disrupt mobility or energy balance based on brain region and genetic background. Compared to young mice, aged C57BL/6 mice exhibit marked locomotor (but not energy balance) impairments. In contrast, aged BALB mice exhibit marked energy balance (but not locomotor) impairments. Age-related changes in cerebellar or hypothalamic gene expression accompany these phenotypes. Aging evokes upregulation of immune pattern recognition receptors and cell adhesion molecules. However, these changes do not localize to microglia, the major CNS immunocyte. Consistent with a neuronal role, there is a marked age-related increase in excitatory synapses over the cerebellum and hypothalamus. Functional imaging of these regions is consistent with age-related synaptic impairments. These studies suggest that aging reactivates a developmental program employed during embryogenesis where immune molecules guide synapse formation and pruning. Renewed activity in this program may disrupt excitatory neurotransmission, causing significant behavioral deficits

    Decreased home cage movement and oromotor impairments in adult \u3ci\u3eFmr1\u3c/i\u3e-KO mice

    Get PDF
    Fragile X syndrome (FXS) is a common inherited disorder that significantly impacts family and patient day-to-day living across the entire lifespan. The childhood and adolescent behavioral consequences of FXS are well-appreciated. However, there are significantly fewer studies (except those examining psychiatric comorbidities) assessing behavioral phenotypes seen in adults with FXS. Mice engineered with a genetic lesion of Fmr1 recapitulate important molecular and neuroanatomical characteristics of FXS, and provide a means to evaluate adult behavioral phenotypes associated with FXS. We give the first description of baseline behaviors including feeding, drinking, movement, and their circadian rhythms; all observed over 16 consecutive days following extensive environmental habituation in adult Fmr1-KO mutant mice. We find no genotypic changes in mouse food ingestion, feeding patterns, metabolism, or circadian patterns of movement, feeding, and drinking. After habituation, Fmr1-KO mice demonstrate significantly less daily movement during their active phase (the dark cycle). However, Fmr1-KO mice have more bouts of activity during the light cycle compared to wildtypes. In addition, Fmr1-KO mice demonstrate significantly less daily water ingestion during the circadian dark cycle, and this reduction in water intake is accompanied by a decrease in the amount of water ingested per lick. The observed water ingestion and circadian phenotypes noted in Fmr1-KO mice recapitulate known clinical aspects previously described in FXS. The finding of decreased movement in Fmr1-KO mice is novel, and suggests a dissociation between baseline and novelty-evoked activity for Fmr1-KO mice

    Toll-Like Receptor 2 Is a Regulator of Circadian Active and Inactive State Consolidation in C57BL/6 Mice

    No full text
    Regulatory systems required to maintain behavioral arousal remain incompletely understood. We describe a previously unappreciated role that toll-like receptor 2 (Tlr2, a membrane bound pattern recognition receptor that recognizes specific bacterial, viral, and fungal peptides), contributes toward regulation of behavioral arousal. In 4–4.5 month old mice with constitutive loss of Tlr2 function (Tlr2−/− mice), we note a marked consolidation in the circadian pattern of both active and inactive states. Specifically, Tlr2−/− mice demonstrated significantly fewer but longer duration active states during the circadian dark cycle, and significantly fewer but longer duration inactive states during the circadian light cycle. Tlr2−/− mice also consumed less food and water, and moved less during the circadian light cycle. Analysis of circadian rhythms further suggested that Tlr2−/− mice demonstrated less day-to-day variability in feeding, drinking, and movement behaviors. Reevaluation of this same mouse cohort at age 8–8.5 months revealed a clear blunting of these differences. However, Tlr2−/− mice were still noted to have fewer short-duration active states during the circadian dark cycle, and continued to demonstrate significantly less day-to-day variability in feeding, drinking, and movement behaviors. These results suggest that Tlr2 function may have a role in promoting transitions between active and inactive states. Prior studies have demonstrated that Tlr2 regulates sickness behaviors including hypophagia, hyperthermia, and decreased activity. Our work suggests that Tlr2 function also evokes behavioral fragmentation, another aspect of sickness behavior and a clinically significant problem of older adults

    Mice lacking serotonin 2C receptors have increased affective responses to aversive stimuli

    Get PDF
    Although central serotonergic systems are known to influence responses to noxious stimuli, mechanisms underlying serotonergic modulation of pain responses are unclear. We proposed that serotonin 2C receptors (5-HT2CRs), which are expressed within brain regions implicated in sensory and affective responses to pain, contribute to the serotonergic modulation of pain responses. In mice constitutively lacking 5-HT2CRs (2CKO mice) we found normal baseline sensory responses to noxious thermal, mechanical and chemical stimuli. In contrast, 2CKO mice exhibited a selective enhancement of affect-related ultrasonic afterdischarge vocalizations in response to footshock. Enhanced affect-related responses to noxious stimuli were also exhibited by 2CKO mice in a fear-sensitized startle assay. The extent to which a brief series of unconditioned footshocks produced enhancement of acoustic startle responses was markedly increased in 2CKO mice. As mesolimbic dopamine pathways influence affective responses to noxious stimuli, and these pathways are disinhibited in 2CKO mice, we examined the sensitivity of footshock-induced enhancement of startle to dopamine receptor blockade. Systemic administration of the dopamine D2/D3receptor antagonist raclopride selectively reduced footshock-induced enhancement of startle without influencing baseline acoustic startle responses. We propose that 5-HT2CRs regulate affective behavioral responses to unconditioned aversive stimuli through mechanisms involving the disinhibition of ascending dopaminergic pathways
    corecore