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University of Nebraska Medical Center, Omaha NE 68198-5039
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3Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588

4Department of Developmental Neuroscience, Monroe-Meyer Institute, 985960 Nebraska Medical 
Center, Omaha, NE 68198-5960

Abstract

Fragile X syndrome (FXS) is a common inherited disorder that significantly impacts family and 

patient day-to-day living across the entire lifespan. The childhood and adolescent behavioral 

consequences of FXS are well-appreciated. However, there are significantly fewer studies (except 

those examining psychiatric comorbidities) assessing behavioral phenotypes seen in adults with 

FXS. Mice engineered with a genetic lesion of Fmr1 recapitulate important molecular and 

neuroanatomical characteristics of FXS, and provide a means to evaluate adult behavioral 

phenotypes associated with FXS. We give the first description of baseline behaviors including 

feeding, drinking, movement, and their circadian rhythms; all observed over 16 consecutive days 

following extensive environmental habituation in adult Fmr1-KO mutant mice. We find no 

genotypic changes in mouse food ingestion, feeding patterns, metabolism, or circadian patterns of 

movement, feeding, and drinking. After habituation, Fmr1-KO mice demonstrate significantly less 

daily movement during their active phase (the dark cycle). However, Fmr1-KO mice have more 

bouts of activity during the light cycle compared to wildtypes. In addition, Fmr1-KO mice 

demonstrate significantly less daily water ingestion during the circadian dark cycle, and this 

reduction in water intake is accompanied by a decrease in the amount of water ingested per lick. 

The observed water ingestion and circadian phenotypes noted in Fmr1-KO mice recapitulate 

known clinical aspects previously described in FXS. The finding of decreased movement in Fmr1-

KO mice is novel, and suggests a dissociation between baseline and novelty-evoked activity for 

Fmr1-KO mice.
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INTRODUCTION

Fragile X Syndrome (FXS) is the most common inherited intellectual disability and a 

leading monogenic cause of autism, affecting 1 out of every 4,000 males and 1 out of every 

7,000 females (Lozano et al., 2014). FXS is caused by an expansion of a CGG repeat in the 

5′-untranslated region of the fragile X mental retardation 1 (FMR1) gene which results in 

silencing of the gene (Pieretti et al., 1991). The fragile X mental retardation protein (FMRP) 

is expressed throughout the body, but in the brain FMRP is enriched in neurons (Devys et 
al., 1993). FMRP regulates mRNA translation and transport and many of its targets are 

synaptic proteins (Darnell et al., 2011; Ascano et al., 2012). Individuals with FXS have 

cognitive (Van der Molen et al., 2010) as well as behavioral impairments that include 

hyperactivity, attention deficits, social anxiety, sensory hypersensitivity, autistic-like 

behaviors such as gaze avoidance, perseverative language and hand stereotypies, motor skill 

deficits as well as speech impairments (Lozano et al., 2014; Zingerevich et al., 2009). Much 

of these behavioral studies have focused on children and adolescents. Published reports 

describing phenotypic characteristics of adults with FXS are mostly lacking, but do 

demonstrate (particularly in males) deficits in functional status, impaired activities of daily 

living performance, and increased risk for psychiatric disorders (Hartley et al., 2011; 

Sabaratnum et al., 2003; Bailey et al., 2012; Smith et al., 2012).

The Fmr1-KO mouse recapitulates some of the physical, neurological, and behavioral 

deficits observed in FXS. These features include macroorchidism (Bakker et al., 1994), 

hyperactivity (per open field test; Kazdoba et al., 2014; also Mineur et al., 2002), attention 

deficits (Moon et al., 2006), altered anxiety-related behaviors (Kazdoba et al., 2014; Saré et 
al., 2016), impaired social communication (Mineur et al., 2006), sensory filtering deficits 

(Frankland et al., 2004), motor deficits (Padmashri et al., 2013; Hodges et al., in press), and 

subtle cognitive impairments (Bakker et al., 1994). Further studies have replicated Fmr1-KO 

subtle cognitive impairments (in water maze reversal task; D’Hooge et al., 1997; radial arm 

task Mineur et al., 2002; in fear memory Zhao et al., 2005, in five-choice serial reaction time 

test, Krueger et al., 2011). These studies demonstrate that Fmr1-KO mice are valuable 

models of human FXS useful for elucidating disease mechanisms and potential therapeutic 

interventions.

As the current evidence suggests that males with FXS have significant impairments in 

behaviors required for day-to-day living, we propose that mouse home cage behaviors 

provide an appropriate means to study these functional impairments. Here, we report the 

first characterization of daily behavioral patterns for adult Fmr1-KO mice in an acclimated 

home cage environment. Specifically, we compared both daily overall and within day 

temporal patterns of activity, locomotion, feeding, and drinking in Fmr1-KO and wildtype 

(WT) littermate mice. These studies demonstrate that functional loss of FMRP evokes a 
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well-defined phenotype characterized by: (1) decreased dark cycle water ingestion 

accompanied by tongue movement dyscoordination, (2) decreased locomotor movement, (3) 

increased light cycle activity bouts, and (4) unchanged overall feeding and metabolic 

behaviors.

METHODS

Mice

Fmr1-KO mice (C57BL/6) generated by homologous recombination at Fmr1 exon 5 to 

create a null allele, were a gift of D. Nelson (Baylor). These mice were backcrossed to 

C57BL/6 for over 15 generations at the time of receipt and several times more in our own 

lab. For these experiments heterozygous females were mated to Fmr1-KO males to produce 

litters with males whose genotype was either WT or Fmr1-KO. Genotypes were determined 

by PCR analysis of DNA extracted from tail samples using previously described primers 

(Bakker et al., 1994). Animals were cared for in accordance to NIH guidelines for laboratory 

animal welfare. All experiments were conducted with approval of the University of 

Nebraska Medical Center Institutional Animal Care and Use Committee. Animals were 

raised on a 12-hour-on/12-hour-off light/dark cycle (lights on at 0600 CST), and were given 

food and water ad libitum (except where noted otherwise). Mice not undergoing testing were 

group-housed in the mouse housing facility. For this experiment, we tested 32 mice in total. 

Wildtype mice (WT) are littermates of the Fmr1-KO mice. 16 male mice (8 WT, 8 Fmr1-

KO) were tested in one cohort and 16 male mice (8 WT, 8 Fmr1-KO) were tested in a 

second cohort. Mice were counterbalanced such that cages containing a WT mouse for the 

first cohort had a Fmr1-KO mouse for the second cohort, and vice versa. Mice had ad lib 
access to powdered chow (PicoLab Mouse Irradiated 5058, OH) and autoclaved water 

(prepared in house). Facility lighting duty cycle was set as above. Facility lighting intensity 

averaged at 1270 lux (Li-210SA, LiCOR, NE); room temperature ranged between 22.8 and 

24.4°C and relative humidity between 5–40% (Watchdog V5.11, Edstrom Inc., WI). Facility 

walls were lead-lined, and completely blocked noise from the surrounding hallways and 

rooms. Entrance was key controlled and limited to two investigators (TRC, SJB).

Home cage monitoring

At the start of testing, the mice were 11–12 weeks old. Baseline mouse day-to-day behavior 

was measured using a custom-designed home cage monitoring system (HCM) that measures 

behaviors with 1 ms temporal and 0.5 cm spatial resolution (similar to that described in 

Goulding et al., 2008). With the HCM, we simultaneously measure patterns of feeding, 

drinking, and movement in 32 individually housed animals for extended durations. After the 

mouse is introduced to the home cage, it receives no further human handling until the end of 

the experiment, 21 days after initial placement. Since mouse handling is a known stressor 

well-demonstrated to alter many behaviors (Balcombe et al., 2004), we thus capture feeding, 

drinking, and movement behaviors without imposing significant external stressors on the 

mice. Our experience further shows that behavioral data streams for C57BL/6 mice taken 

with this system are highly similar regardless of system location or investigator (Tecott, 

Goulding, personal communication).
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To measure licking, we used a custom lickometer that determined changes in capacitance as 

the mouse tongue made and withdrew contact from a stainless steel sipper tube. As 

referenced from an aperture milled in the cage wall, the lick spout tip protruded 0.5 mm into 

the cage. Our validation tests showed that with no mice in the system, no lick events were 

observed for any system cage. We also noted excellent agreement in lick events determined 

by our lickometer compared to manual scoring of high speed video while a mouse was 

licking (Parkison et al., 2011). The capacitive system easily identifies missed licks (since an 

electrical connection was not established). However, on occasion a “water bridge” would 

extend from the sipper tube end to the mouse mouth, leading to an artifactually long lick 

duration. Mice manipulating the lick spout with their paws is another potential cause of long 

lick durations. Pilot experiments demonstrated that approximately one lick every 1200 

licking events was longer than our 200 ms duration criteria. Given this relative scarcity, we 

thus decided not to censor lick durations >200 ms long from the dataset. The lickometer was 

Schmitt-triggered to limit output voltages to TTL low (0.2 V) and high (5.2 V); this output 

was sampled at 1 kHz. For our studies, the interlick interval is the time between the offset 

(TTL voltage high to low) of the nth lick, and the onset (TTL voltage low to high) of the (n

+1)th lick (i.e. off-on intervals). Prior studies have demonstrated that total mouse water 

intake can be accurately inferred from the total number of licks per day, and the 

corresponding duration of each mouse lick (Supplemental Data, Goulding et al., 2008).

We measured mouse feeding using a photobeam placed in front of the powdered food 

supply. Mice were weighed before and after placement into the home cage monitoring 

system. We determined mouse position and movement within the cage by measuring 

movement-evoked torques at three points in the cage (front left and right corner, back 

center), and solving exact equations (with known mouse weight) for mouse position. All 

data was sampled at 1 kHz, and written to disk using a real-time computer (to prevent 

potential skipped data points). All mouse data underwent rigorous quality control to 

eliminate known spurious values (arising from blocked photobeams or sipper tubes, sudden 

changes in cage center of mass, etc.), followed by a data classification workflow to 

determine mouse active and inactive states, and mouse bouts of feeding, drinking, and 

movement (Goulding et al., 2008). Finally, we note that it takes time to place each mouse in 

its home cage at the experiment start, and that all mice have to be in the system to begin data 

collection. We thus do not measure feeding, drinking, or movement from the moment the 

mouse is first placed in the cage. Our first day habituation metrics thus do not reflect 

feeding, drinking, or movement performed by the mice during this brief interval.

Movement classification

An unsupervised machine learning algorithm determines locomotor speed and turning angle 

criteria associated with forward locomotion and movement-in-place, respectively. We 

classify paths characterized as having faster speeds, smaller turn angles, and no pauses as 

forward locomotion. Conversely, we classify paths characterized as having slower speeds, 

larger turn angles, and/or pauses as movement-in-place. Total activity is then calculated from 

the sum of both locomotor and movement-in-place distances (Goulding et al., 2008). In our 

studies, most locomotor distance arises from forward locomotion, with about 10 fold less 

distance from movement-in-place bouts.

Bonasera et al. Page 4

Genes Brain Behav. Author manuscript; available in PMC 2018 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Periodicity analysis

Circadian periodicities for feeding, drinking, and movement are determined per Lomb 

(1976), Scargle (1982). Circadian waveforms are calculated by summing sine waves 

corresponding to significant periodicities identified by the Lomb-Scargle algorithm, 

weighted by periodicity amplitude.

Metabolic studies

Cohorts per above. Mice were tested up to four days prior to home cage behavioral 

monitoring. Dual energy X-ray absorptiometry (DEXA) studies were performed by standard 

protocol (modified from whitelabs.org: DEXA (GE Lunar PIXImus) Scanning Protocol), 

using inhalational isoflurane anesthesia, a PIXImus scanner (GE Lunar, Inside/Outside Inc., 

WI), and Piximus 2.10 software. For DEXA studies, mice were removed from their group 

housing cage, weighed, briefly anesthetized, imaged, transferred to a holding cage to recover 

from anesthesia, and then returned to their original housing status.

Our indirect calorimetry system (open circuit system; Oxymax Equal Flow, Columbus 

Instruments, OH) consisted of an air pump, CO2 sensor (range 0%–0.8%; resolution 0.002% 

CO2; drift <20 ppm CO2/hr), paramagnetic O2 sensor (range 0–100%; resolution 0.002% of 

specified range; drift <0.06% of specified range per 24 hrs), air dryer, controller, 8 

hermetically sealed indirect calorimetry chambers (20.1×10.2×12.7 cm3, part 760M-D8, 

Columbus Instruments), chamber photocell bracket (1.27 cm between photocells), photocell 

controller (Opto M3, Columbus Instruments), and software (Oxymax for Windows 4.49). 

Indirect calorimetry measures were taken per standard protocol (Tso 2013); mice were 

fasted between 9:00 AM and 1:00 PM on the testing day, the system turned on at 9:00 AM, 

and given 3 hrs to equilibrate before calibration. Calibration gases were 100% N2 and a 

mixture of 0.5% CO2/20% O2/79.5% N2 (span). During system operation and data 

collection, we used room air as the input gas for each calorimetry chamber. Each station 

serially cycled through 5 min of data acquisition for the duration of data collection (1:00 PM 

to 5:00 PM). To determine basal metabolic rate, we averaged values obtained from the three 

epochs (15 min total) where each mouse demonstrated the least activity (as measured by 

photobeam breaks). Conversely, to determine activity-associated metabolic rate, we averaged 

values obtained from the three epochs where each mouse had the greatest activity. We 

performed ANCOVA analysis to determine significant differences in the metabolic 

parameters maximum oxygen uptake (V̇O2), global oxygen delivery (DO2), oxygen output 

(O2out), maximum CO2 production, (V̇CO2), global CO2 removal (DCO2), CO2 output 

(CO2out), and heat generated as a function of body adiposity (Tschöp et al., 2012). 

Bonferonni-corrected two-tailed t-tests were used to assess for differences in remaining 

DEXA parameters: bone mass density (BMD), bone mineral content (BMC), bone area 

(BArea), tissue area (TArea), ratio of soft tissue attenuation (RST), total tissue mass (TTM), 

and weight.

Statistical analysis

Given the large number of behaviors measured by our home cage system, we first controlled 

familywise error rates across all measures except longitudinal time series measures (e.g. 

multiple measures over circadian day). Unless stated otherwise, we used a false discovery 
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rate statistic (FDR, calculated per MAFDR, MATLAB) set at p<0.05 (Benjamini & 

Hochberg 1995; Storey 2002). Behaviors identified as significant in this analysis were 

subjected to further analysis to determine overall and circadian differences between WT and 

Fmr1-KO groups. Dark cycle/light cycle comparisons were performed using two-way 

analysis of variance (ANOVA), including terms for the effects of genotype and light cycle, 

and a genotype × light cycle interaction (implemented with anova2, MATLAB). This metric 

is identical to a repeated measure ANOVA with lighting cycle as the repeated measure and 

genotype as the independent measure. Circadian comparisons were performed using 

Student’s t-test followed by Bonferonni correction for the number of longitudinal time 

measurements (usually 12). For event duration and inter-event interval studies, we developed 

Gaussian mixture models using custom MATLAB code. Briefly, values for mixture pi, mu, 

and sigma were initially guessed using kmeans, and then refined by estimation maximization 

(EM). We began by fitting 2 component mixtures, and added additional mixture components 

until we achieved a target likelihood ratio (1×10−6).

RESULTS

The overall home cage behavioral phenotype of Fmr1-KO mice is characterized by less 
drinking and movement

Eleven home cage behaviors differed between WT and Fmr1-KO mice. We depict these 

differences in a volcano plot (Figure 1), a specialized scatter plot that visualizes both 

statistical significance and fold change over large replicate datasets. In this figure, each 

individual point represents one behavior measured between WT and Fmr1-KO mice; points 

above the dotted line demonstrate statistically significant differences (p<0.05, paired two-

sided t-test). Points left of the left dashed line show two-fold reduction in behavior (WT 

compared to Fmr1-KO); points right of the right dashed line show two-fold increase in 

behavior (WT compared to Fmr1-KO). Thus, points above the dotted line and left of the left 

dashed line or right of the right dashed line, show behaviors where Fmr1-KO mice show at 

least a two-fold change in a specific behavior compared to WT mice that is statistically 

significant at p<0.05 or better. Results for all behavioral outcomes are provided in 

Supplemental Table 1. Of these 11 behaviors found significant after FDR familywise error 

rate correction, 6 represented phenotypic changes in movement (3 of which are independent 

aspects of movement), and 5 represented changes in water ingestion. We examine these 

phenotypes in greater detail below.

Fmr1-KO mice have decreased movement behaviors

On the first day of habituation (first 24 hours mice placed into home cage environment), 

there were no genotypic differences in locomotion (WT 757.6 ± 77 m; Fmr1-KO 768.5 ± 61 

m, NS; dark cycle WT 547.3 ± 68 m, Fmr1-KO 549.1 ± 44 m; light cycle WT 210.4 ± 18 m, 

Fmr1-KO 219.4 ± 29.5 m; all NS). Over the 16 days following 5 full days of habituation, 

Fmr1-KO mice showed ~17% less dark cycle movement on a day-by-day basis compared to 

wildtypes (WT 542.4 ± 124 m; Fmr1-KO 450.2 ± 103 m; two-way ANOVA; genotype 

F1,30,63=3.39, p NS; lighting cycle F1,63=595.9, p≪0.001; genotype × lighting cycle 

interaction F1,30,63 = 7.71, p<0.009; Bonferroni corrected for 3 comparisons; Figure 2A). 

Decreased movement distance in Fmr1-KO mice results from significant decreases in 
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forward locomotion and movement-in-place bout onsets (particularly in the last 4 hours of 

the dark cycle), as well as a strong trend toward decreased forward locomotion speeds 

(Figures 2B–2G depict this finding for forward locomotion; analogous data for movement-

in-place bouts not presented).

Frm1-KO mice locomotor paths also demonstrated evidence of mild ataxia compared to WT 

(Figure 2H). Using a bounding box area metric to measure locomotor straightness, we find 

that Fmr1-KO mice had larger bounding box areas (corresponding to less straight locomotor 

pathways followed from stop to stop; p<0.001).

Fmr1-KO mice ingest less water secondary to altered licking dynamics

On a day-to-day basis, Fmr1-KO mice drank approximately 14% less water compared to 

wildtypes (WT: 4.41 ± 0.69 g; Fmr1-KO 3.79 ± 0.65 g, p<0.015); this difference occurred 

during the dark cycle, when mice were most active (two-way ANOVA; genotype F1,30,63 = 

6.738, p<0.015; lighting cycle F1,63 = 529.5, p≪0.001; genotype × lighting cycle interaction 

F1,30,63 = 2.325, p NS; Bonferroni corrected for three comparisons; Figure 3A). No 

significant circadian differences were noted in drinking bout probability, intensity (mg water 

ingested per second), onsets, duration, or per bout water consumption (data not shown). This 

finding suggests an etiology in drinking performance, rather than drinking patterns. We thus 

examined mouse licking coefficients, defined as the water intake (in mg) per single lick 

event. We calculated group licking coefficients by averaging daily lick coefficients across all 

WT and Fmr1-KO mice (Figure 3B). The overall lick coefficient of Fmr1-KO mice was ~9% 

lower (1.02) compared to wildtype (1.12), suggesting that Fmr1-KO mice ingested less 

water per lick compared to WT (p<0.003; one-way ANOVA). Frm1-KO mice also have 

many more mouse-days with very low lick coefficients (<0.5) compared to WT. Visual 

inspection of daily behavioral time series show that Fmr1-KO mice (Figure 3C) have greater 

variability in both lick duration and interlick interval compared to wildtypes (Figure 3D). 

Thus, decreased water intake in Fmr1-KO mice is attributable to dysregulation of primary 

licking behavior, manifested as less water intake per lick and greater lick duration and 

interlick interval variability, ultimately leading to less water consumption on a day-to-day 

basis.

Fmr1-KO mice have more light cycle periods of activity

Given known changes in sleep associated with FXS, we analyzed data related to active and 

inactive states, correcting for the number of tests within this overall behavioral domain. Of 

note, Fmr1-KO mice had more active state onsets during the light cycle compared to WT 

mice (5.7 ± 1.4 WT; 7.7 ± 3.9 Fmr1-KO, p<0.05). Other activity parameters associated with 

the light cycle, including state duration, total movement, chow and water consumption did 

not differ between WT and Fmr1-KO mice.

WT and Fmr1-KO mice have no differences in food ingestion or metabolism

No genotypic differences were noted in total daily food consumption, dark cycle/light cycle 

food consumption, feeding time budgets, feeding bout distributions within active states, and 

feeding bout probability/intensity/onset-rate/duration/per-bout-consumption. DEXA studies 

revealed no genotypic differences in mouse percent adiposity, BMD, BMC, BArea, TArea, 
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RSA, TTM, or weight. Similarly, no genotypic differences were found in indirect calorimetry 

measures of V̇O2, DO2, O2out, V ̇CO2, DCO2, CO2out, or generated heat under either basal 

metabolic or activity-associated conditions. Thus, we identify no significant change in 

overall mouse feeding or energy expenditure secondary to loss of FMRP function.

WT and Fmr1-KO mice have no circadian differences in movement, feeding, or drinking 
behavior

The original manuscript describing behavioral phenotypes of Fmr1-KO mice noted no 

significant differences in circadian behavior as assessed by running wheel activity under a 

12-hr-on, 12-hr-off lighting cycle (Bakker et al., 1994). We replicate and extend this 

phenotype by demonstrating no major differences between WT and Fmr1-KO mice in 

circadian rhythms of movement, feeding, and drinking. There is no phase shift in movement, 

feeding, or drinking waveforms between WT and Fmr1-KO mice (Figure 4A–C). We note 

small, but statistically significant, differences in the normalized power of the ultridian 

rhythms for movement, feeding, and drinking by Lomb-Scargle periodograms (Figure 4D–

F). Ultridian rhythms (periodicities shorter than 24 hours) are required to shape circadian 

onsets and offsets (Westermark et al., 2013). The small differences in normalized power of 

ultridian rhythms between WT and Fmr1-KO mice account for the small changes in 

movement, feeding, and drinking waveforms depicted in Figure 4A–C. Since we did not 

study mice under epochs of constant darkness, we did not detect any evidence of changes in 

free running period as noted by Zhang et al. (2008).

DISCUSSION

We describe the first long-term baseline observations of feeding, drinking, movement, and 

circadian rhythm in Fmr1-KO mice. These observations were taken over at least 16 

consecutive days using an automated home cage monitoring system that eliminated mouse 

handling over the experimental duration. We examined feeding, drinking, and movement 

events at high spatial and temporal resolution.

Dissociation of overall movement in novel vs. home cage environmental settings in male 
Fmr1-KO mice

We note that Fmr1-KO mice show 17% decrease in overall movement throughout the 16 day 

observation period compared to WT mice; decreased distance covered by forward 

locomotion and movement-in-place bouts equally contributed to this overall deficit. This 

locomotor deficit was fully apparent during the dark cycle, when mice are most active. 

Dissecting this phenotype suggested that decreased bout onsets, particularly during the last 

four hours of the dark cycle, was the most significant driver of this behavioral change.

Our results were somewhat unanticipated since a majority of prior studies in the related but 

different open field assay demonstrated increased locomotor activity in Fmr1-KO mice (Yan 

et al., 2004; Peier et al., 2000; Spencer et al 2005; Qin et al., 2005; Spencer et al., 2011; 

Pietropaolo et al., 2011; Uutela et al., 2012; Olmos-Serrano et al., 2011; Thomas et al., 
2011; Pacey et al., 2011; Liu et al., 2011). Findings of unchanged (Zhao et al., 2005; 

Spencer et al., 2006; Pietropaolo et al., 2011, Goebel-Goody et al., 2012; Baker et al., 2010; 
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Spencer et al., 2011; Wrenn et al., 2015), and even decreased (Fish et al., 2013) open field 

locomotor activity in Fmr1-KO mice have also been reported. Open field performance of 

Fmr1-KO mice also varied with mouse background strain (Pietropaolo et al., 2011; Spencer 

et al., 2011). With the exception of Pietropaolo and colleagues (2011), all of these studies 

examined locomotor function during the light cycle, in a novel arena, for 120 minutes or less 

(a vast majority for 30 minutes or less) of observation time. Given large differences in the 

total observation time between home cage and open field observations, mouse habituation to 

a novel arena may thus be a significant factor underlying the above observations. While we 

could not determine mouse habituation immediately after placement in the home cage 

monitoring system, we did note that during the first 24 hours of testing both WT and Fmr1-

KO mice demonstrated increased home cage activity (compared to activity after 

acclimation), with no genotypic differences noted, findings concordant with above 

(Pietropaulo et al., 2011). The one study that did measure locomotor activity for 24 hrs did 

not observe increased locomotion in Fmr1-KO mice bred to a C57BL/6 background 

(Pietropaolo et al., 2011); these mice were of the same genotype used in our study.

Mouse husbandry conditions may also influence our observed phenotype. We individually 

housed mice for the duration of their metabolic and home-cage behavioral testing, a period 

of approximately 25–28 days. It is well-established that wild male mice prefer solitary social 

situations (Silver, 1995). In laboratory conditions, singly-housed mice may show a tendency 

toward increased activity (Voikar et al., 2005; Guo et al., 2004), with other studies 

demonstrating no significant differences in locomotor behaviors (Arndt et al., 2009; Palanza 

et al., 2001). While single housing has the potential to differentially affect Fmr1-KO mice 

compared to wildtypes, the above studies suggest that single housing is not the sole factor 

responsible for our observed phenotype. We therefore believe that prolonged home cage 

monitoring in acclimated and undisturbed mice over 16 observation days revealed behaviors 

that were not previously appreciated. These data further suggest that constitutive loss of 

Fmr1 function dissociates baseline movement behaviors from novelty/exploratory-driven 

movement behaviors.

Nevertheless, the reduced locomotor activity observed in our study is difficult to reconcile 

with the hyperactivity generally associated with FXS patients (Hatton et al., 2002; Sullivan 

et al., 2006; Kazdoba et al., 2014). Interestingly, hyperactivity in males with Fragile X has 

been shown to change over development with decreased activity in very young children 

followed by increase in preschoolers followed by decrease in adolescent boys (Tranfaglia 

2011; Gabis et al., 2011; Hustyi et al., 2014). Although information regarding hyperactivity 

in adults with FXS is lacking, our data suggest that hypoactivity might be observed in adults 

with FXS.

Functional impairments in Fmr1-KO mice may translate to human FXS clinical phenotypes

We expand upon the initial report of Roy et al. (2011) describing longer interlick intervals 

and increased interlick interval variability in Fmr1-KO mice. In these prior studies, lick 

waveforms were analyzed as spikes, and interspike intervals determined for all bouts of 

licking over 72 hours. Intervisit intervals were examined separately; as were lick counts 

across light and dark cycles. We examined all behaviors associated with water ingestion for 
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at least 16 days following a 5 day home cage acclimation. Loss of Fmr1 function had a 

profound effect on lick duration. We demonstrate that much of the variability in mouse 

oromotor function arose from an increased frequency of both very short and long lick 

durations in Fmr1-KO mice. We confirm that the drinking deficit of Fmr1-KO mice is highly 

significant during the dark cycle, not significant during the light cycle, and that Fmr1 loss 

does not have a strong influence on circadian rhythms of fluid consumption. Finally, our 

studies show that Fmr1-evoked oromotor dysfunction leads to significant functional 

differences in water consumption, with mutant mice ingesting 14% less water on a daily 

basis. Since mutant mice patterns of drinking bout initiation, duration, intensity, and intake 

are similar to those observed in WT mice, it would be important to test whether Fmr1 loss 

increases the overall behavioral “cost” (e.g. effort) associated with water ingestion.

The functional impairments in mobility and drinking demonstrated in male Fmr1-KO mice 

may have a clinical parallel in human adults with FXS. Adult men with FXS demonstrate 

marked functional impairments, with most requiring activities of daily living (ADL) 

assistance, lacking a high school diploma, and having limited friends and social 

engagements (Hartley et al., 2011). Greater than 20% of adult males with FXS have feeding 

difficulties unrelated to utensil use; greater than 10% of adult males with FXS have 

significant difficulties with both expressive and receptive aspects of speech. In adults, 

persons with FXS have a ten-fold increase in psychiatric comorbidity compared to the 

population at large (Sabaratnam et al., 2003); 30% of females, and 50% of males take 

medications to treat anxiety complaints (Bailey et al., 2012). Adults with both FXS and 

autism were more impaired in both communication and social reciprocity compared to 

controls with either FXS or autism (Smith et al., 2012). Of note, up to 10% of adult males 

with FXS continued to report difficulty swallowing pills (Bailey et al., 2012).

Oromotor dysfunction could also contribute to the language impairments exhibited by 

individuals with FXS (Newell et al., 1983; Paul et al., 1987; Barnes et al., 2006; Abbeduto et 
al., 2007; Gernsbacher et al., 2008; Finestack et al., 2009). In support of this hypothesis, 

Fmr1-KO mice demonstrate altered ultrasonic vocalizations (Gholizadeh et al., 2014; 

Rotschafer et al., 2012; Spencer et al., 2011; Roy et al., 2012). One brain region known to 

play a role in both human speech as well as mouse oromotor function is the cerebellum 

(Bryant et al., 2010; Fujita et al., 2008; Ackermann 2008; Spencer & Slocomb 2007). 

Indeed, cerebellar neuropathology and dysfunction have been described both in FXS 

(Mostofsky et al., 1998; Greco et al., 2011; Hazlett et al., 2012) as well as in Fmr1-KO mice 

(Koekkoek et al., 2005; Ellegood et al., 2010).

In summary, we provide the first report of Fmr1-KO mouse baseline home cage behavioral 

phenotypes. These phenotypes provide critical context to interpret data arising from a variety 

of behavioral assays, including those evaluating motor, sensory, autonomic, cognitive, 

affective, and circadian phenotypes. Our results justify further studies of how Fmr1 
functional loss may differentially affect baseline versus novelty-induced movement and 

locomotion. We also demonstrate that home cage monitoring is an appropriate platform to 

evaluate treatments designed to ameliorate the locomotion and oromotor deficits 

accompanying Fmr1 functional loss.
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Figure 1. Volcano plot of differential behaviors between WT and Fmr1-KO mice controlling for 
familywise error rates across entire experiment
The Fmr1-KO mouse behavioral phenotype can broadly be characterized as having altered 

movement bout properties, and altered water consumption. Dashed vertical lines depict 

boundaries for two-fold decreases (left) and increases (right) in behavior (WT/Fmr1-KO); 

dotted horizontal line depicts behavioral significance p<0.05. Identified behaviors are: (1) 

movement-in-place bout rate dominance, (2) movement-in-place bout rate dominance per 

R2, (3) stop dominance, (4) stop dominance per R2, (5) forward locomotion bout rate 

dominance, (6) forward locomotion bout rate dominance per R2, (7) percent of all active 

states during the light cycle containing no feeding, no drinking, and low movement, (8) 

percent of active states during light cycle containing no feeding, no drinking, and low 

movement, (9) number of active states during the light cycle that contained both small 

feeding and drinking bouts, (10) mean percentage of time stopped at the lick spout, (11) 

number of active states during the light cycle containing small feeding and large drinking 

bouts.
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Figure 2. Fmr1-KO mice demonstrate less day-to-day movement secondary to decreased rate of 
movement bout onsets
A. Across entire experiment, Fmr1-KO mice have less movement during the dark cycle 

compared to WT controls. Green traces depict WT mice, red traces depict Fmr1-KO mice, * 

depicts p<0.05. B–G. Circadian patterns of forward locomotion bouts. B. Movement versus 

circadian time. C. Probability of a locomotor bout versus circadian time. D. Locomotor 

speed versus circadian time. E. Locomotor bout onset rate versus circadian time. F. 

Locomotor bout duration versus circadian time. G. Locomotor bout distance versus 

circadian time. For B–G, green traces depict WT mice, red traces depict Fmr1-KO mice, * 

depicts p<0.05 (Bonferroni corrected). Error bars ± 1 standard deviation. Shaded grey region 

depicts dark cycle activity; dashed lines correspond to lights off and lights on. H. Histogram 

of locomotor bounding box areas, transformed by square root. Lower bounding box values 

correspond to straighter locomotor paths. Median WT bounding box value 26.7; median 

Fmr1-KO bounding box value 27.9 (NS). Green bars depict values from WT mice; red bars 

depict values from Fmr1-KO mice.
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Figure 3. Fmr1-KO mice demonstrate deficits in water ingestion secondary to tongue 
dyscoordination
A. Across entire experiment, Fmr1-KO mice drink less water during the dark cycle 

compared to WT cohorts. Green traces depict WT mice, red traces depict Fmr1-KO mice, * 

depicts p<0.05. B. Fmr1-KO mice have decreased licking coefficients compared to WT. 

Boxplot of daily licking coefficients for WT (left) and FMR1-KO (right) mice. The central 

mark within each box depicts median, box edges are the 25th and 75th percentiles, the 

whiskers extend to the most extreme points not identified as outliers. Outliers depicted as red 

crosses above and below the whiskers. p<0.003 by one-way ANOVA. C. Representative 

licking bouts from WT mice. For each panel, the bottom set of traces depicts one day of 

active states (dark green rectangles), movement (light green hatches), feeding (orange 

hatches), and drinking (blue hatches). Dark cycle highlighted with grey background. The 

above set of traces zooms in on this representative active state. Blue and orange lines depict 

the onset and offset of drinking (blue) and feeding (orange) bouts. The top set of traces 

zooms in on a representative licking bout. D. Representative licking bouts from Fmr1-KO 

mice. Layout per panel C. Note that the WT mouse had less heterogeneity in both lick 

durations and interlick intervals compared to the Fmr1-KO mouse.
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Figure 4. No significant differences in circadian rhythms for movement, feeding, and drinking 
between WT and Fmr1-KO mice
A. Observed and predicted movement for WT (light green) and Fmr1-KO (dark green) 

cohorts. Thin line with points depicts the mean values for each cohort; thick line depicts the 

predicted value (determined by summation of significant Lomb-Scargle periodicities). Note 

the increase in WT movement over the last 4 hours of the dark cycle. B. Observed and 

predicted feeding for WT (light orange) and Fmr1-KO (dark orange) cohorts. C. Observed 

and predicted drinking for WT (light blue) and Fmr1-KO (dark blue) cohorts. D. Lomb-

Scargle periodogram for movement. WT periodogram in light green, Fmr1-KO periodogram 

in dark green. E. Lomb-Scargle periodogram for feeding. WT in light orange, Fmr1-KO in 

dark orange. F. Lomb-Scargle periodogram for drinking. WT in light blue, Fmr1-KO in dark 

blue. For D–F, error bars are ± 1 standard deviation. No significant periodicities of longer 

than 24 hours obtained for any behaviors.
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SUPPLEMENTAL FILE 
 
Table S1: Fmr1‐KO and WT behavioral metrics. Column 1 lists the abbreviation for each behavior, 
column 2 lists the overall behavioral assay class, column 3 provides a brief description of the behavior, 
and column 4 is an index. Columns 5 and 6 list mean values for each behavior, control and Fmr1‐KO, 
respectively. Columns 7–39 list results for each test by individual mouse. Control mice are listed in 
columns 7–22; Fmr1‐KO mice are listed in columns 23–39. Columns 40, 42 and 44 provide unadjusted P‐
values calculated by Mann–Whitney, Student's t‐test and fold change (B) methods. Columns 41 and 43 
provide P‐values adjusted by FDR for Mann–Whitney (column 41) and Student's t‐test (column 43). 
Column 45 lists the behavioral fold change. 
 
Excel spreadsheet, 267.7 KB 
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