2,378 research outputs found

    On the Use of Complexity Algorithms: a Cautionary Lesson from Climate Research

    Get PDF
    Complexity algorithms provide information about datasets which is radically different from classical moment statistics. Instead of focusing on the divergences from central values, they quantify other characteristics such as order, pattern repetitions, or the existence of attractors. However, those analyses must be done with the proper statistical treatment, which is, unfortunately, not always the case. In this contribution, I provide an example of the hazards of applying complexity measures without sufficient care by correcting a previously published analysis that aimed to quantify the complexity of climate. I clarify some misconceptions about the use of Sample Entropy and revise the incorrect assessments and conclusions drawn from the previous misapplication of the methods

    La lluita contra el fracàs escolar : el paper dels govern locals

    Get PDF
    Informe elaborat per Xavier Bonal, del Departament de Sociologia de la Universitat Autònoma de Barcelona, per a la jornada del XVIII Fòrum Local d'Educació, celebrada a Martorell el 10 de febrer de 201

    The 15N-enrichment in dark clouds and Solar System objects

    Full text link
    The line intensities of the fundamental rotational transitions of H13CN and HC15N were observed towards two prestellar cores, L183 and L1544, and lead to molecular isotopic ratios 140 6 14N/15N 6 250 and 140 6 14N/15N 6 360, respectively. The range of values reflect genuine spatial variations within the cores. A comprehensive analysis of the available measurements of the nitrogen isotopic ratio in prestellar cores show that molecules carrying the nitrile functional group appear to be systematically 15N-enriched com- pared to those carrying the amine functional group. A chemical origin for the differential 15N-enhance- ment between nitrile- and amine-bearing interstellar molecules is proposed. This sheds new light on several observations of Solar System objects: (i) the similar N isotopic fractionation in Jupiter's NH3 and solar wind N+; (ii) the 15N-enrichments in cometary HCN and CN (that might represent a direct inter- stellar inheritance); and (iii) 15N-enrichments observed in organics in primitive cosmomaterials. The large variations in the isotopic composition of N-bearing molecules in Solar System objects might then simply reflect the different interstellar N reservoirs from which they are originating
    corecore