13 research outputs found

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds

    Expérimentations de soutÚnements ancrés par tirants actifs

    No full text
    Republié dans Bull. Liaison Labo. P. et Ch., Spécial XIF, octobre, pp. 41-44 et version anglaise, Special Issue XIE, novembre, pp. 46-50International audienceCOMMUNICATION PRESENTEE LORS DE LA SESSION V : INTERACTION SOL-STRUCTURE DU 10E CONGRES INTERNATIONAL DE MECANIQUE DES SOLS ET DES TRAVAUX DE FONDATIONS - STOCKHOLM - 15-19 JUIN 1981. ON PRESENTE LES RESULTATS LES PLUS SIGNIFICATIFS DES MESURES EFFECTUEES SUR 2 RIDEAUX DE PALPLANCHES ET UNE PAROI MOULEE, ANCRES CHACUN PAR UNE NAPPE DE TIRANTS ACTIFS ET L'ON COMPARE CES RESULTATS A CEUX DES CALCULS EN DEPLACEMENT EFFECTUES A POSTERIORI (CALCULS AU MODULE DE REACTION DANS LE CAS DES 3 OUVRAGES ET CALCULS EN ELEMENTS FINIS DANS LE CAS DE LA PAROI MOULEE). L'ANALYSE DES RESULTATS EXPERIMENTAUX ET THEORIQUES PERMET DE DEGAGER LES PRINCIPAUX ASPECTS DU COMPORTEMENT DES OUVRAGES ET DONNE DES INDICATIONS SUR LA VALIDITE DES METHODES DE CALCUL

    The SuperCam infrared instrument on the NASA MARS2020 mission: performance and qualification results

    No full text
    International audienceIn July 2020, NASA will launch the Mars2020 mission. This mission, very similar to the Mars Science Laboratory and its rover Curiosity, consists in landing an instrumented rover on the Martian surface in order to characterize the geology and history of a new landing site on Mars, investigate Mars habitability, seek potential biosignatures, cache samples for an eventual return to Earth, and demonstrate in-situ production of oxygen needed for human exploration. The rover will carry several different instruments to perform field analyses in biology, climatology, mineralogy, geology and geochemistry. Among this payload, the SuperCam instrument, an improved new generation of the ChemCam instrument on Curiosity, has been developed for remote microscale characterization of the mineralogy and elemental chemistry of the Mars surface, along with the search for extant organic materials. In addition to the elemental characterization offered by Laser-Induced Breakdown Spectroscopy (LIBS), a new remote Raman spectroscopy analysis and an infrared spectrometer have been added for a complete mineralogical and chemical characterization of the samples. A context color imaging capability is also implemented to place the analyzed samples in their geological context.SuperCam consists of three units. The “Body Unit” built by the LANL (Los Alamos National Laboratories) in the US, the “Mast Unit” built by a French consortium of 5 laboratories (IRAP as leader, LESIA, LATMOS, IAS, and LAB) funded by the French Space Agency (CNES), and a “Calibration Target Unit“ under the responsibility of the University of Valladolid in Spain.A very compact IRS (Infrared Spectrometer) is part of the SuperCam-MU payload. The IRS concept is based on the spectral selection by an Acousto-Optic Tunable Filter (AOTF) in the 1.3-2.6 ÎŒm range with a spectral resolution better than 30 wavenumbers. The AOTF is driven by radio frequencies injected in a transducer mounted directly on a birefringent crystal. This coupling creates acoustic waves in the crystal that behave like a Bragg grating. The incident light is then diffracted in two orders (e-ray and o-ray) at the same wavelength following a so-called tuning relation law (relation between diffracted wavelength and injected radio frequency). Each diffracted order is focused on a photodiode. A complete spectrum is obtained after the scan of all individual wavelengths.The IRS is built by LESIA and LATMOS, two French laboratories located in Paris area. After intensive performance and qualification tests as well as a calibration on a flight-representative model, the team has built the flight model. The qualification results and the performances of the instrument are presented
    corecore