14 research outputs found

    Copper transporters and chaperones CTR1, CTR2, ATOX1, and CCS as determinants of cisplatin sensitivity

    No full text
    The development of resistance to cisplatin (cDDP) is commonly accompanied by reduced drug uptake or increased efflux. Previous studies in yeast and murine embryonic fibroblasts have reported that the copper (Cu) transporters and chaperones participate in the uptake, efflux, and intracellular distribution of cDDP. However, there is conflicting data from studies in human cells. We used CRISPR-Cas9 genome editing to individually knock out the human copper transporters CTR1 and CTR2 and the copper chaperones ATOX1 and CCS. Isogenic knockout cell lines were generated in both human HEK-293T and ovarian carcinoma OVCAR8 cells. All knockout cell lines had slowed growth compared to parental cells, small changes in basal Cu levels, and varying sensitivities to Cu depending on the gene targeted. However, all of the knockouts demonstrated only modest 2 to 5-fold changes in cDDP sensitivity that did not differ from the range of sensitivities of 10 wild type clones grown from the same parental cell population. We conclude that, under basal conditions, loss of CTR1, CTR2, ATOX1, or CCS does not produce a change in cisplatin sensitivity that exceeds the variance found within the parental population, suggesting that they are not essential to the mechanism by which cDDP enters these cell lines and is transported to the nucleus

    Synergistic effect of aptamers that inhibit exosites 1 and 2 on thrombin

    No full text
    Thrombin is a multifunctional protease that plays a key role in hemostasis, thrombosis, and inflammation. Most thrombin inhibitors currently used as antithrombotic agents target thrombin's active site and inhibit all of its myriad of activities. Exosites 1 and 2 are distinct regions on the surface of thrombin that provide specificity to its proteolytic activity by mediating binding to substrates, receptors, and cofactors. Exosite 1 mediates binding and cleavage of fibrinogen, proteolytically activated receptors, and some coagulation factors, while exosite 2 mediates binding to heparin and to platelet receptor GPIb-IX-V. The crystal structures of two nucleic acid ligands bound to thrombin have been solved. Previously Padmanabhan and colleagues solved the structure of a DNA aptamer bound to exosite 1 and we reported the structure of an RNA aptamer bound to exosite 2 on thrombin. Based upon these structural studies we speculated that the two aptamers would not compete for binding to thrombin. We observe that simultaneously blocking both exosites with the aptamers leads to synergistic inhibition of thrombin-dependent platelet activation and procoagulant activity. This combination of exosite 1 and exosite 2 inhibitors may provide a particularly effective antithrombotic approach

    High-Throughput Screening Uncovers Novel Botulinum Neurotoxin Inhibitor Chemotypes

    No full text
    Botulism is caused by potent and specific bacterial neurotoxins that infect host neurons and block neurotransmitter release. Treatment for botulism is limited to administration of an antitoxin within a short time window, before the toxin enters neurons. Alternatively, current botulism drug development targets the toxin light chain, which is a zinc-dependent metalloprotease that is delivered into neurons and mediates long-term pathology. Several groups have identified inhibitory small molecules, peptides, or aptamers, although no molecule has advanced to the clinic due to a lack of efficacy in advanced models. Here we used a homogeneous high-throughput enzyme assay to screen three libraries of drug-like small molecules for new chemotypes that modulate recombinant botulinum neurotoxin light chain activity. High-throughput screening of 97088 compounds identified numerous small molecules that activate or inhibit metalloprotease activity. We describe four major classes of inhibitory compounds identified, detail their structure–activity relationships, and assess their relative inhibitory potency. A previously unreported chemotype in any context of enzyme inhibition is described with potent submicromolar inhibition (<i>K</i><sub>i</sub> = 200–300 nM). Additional detailed kinetic analyses and cellular cytotoxicity assays indicate the best compound from this series is a competitive inhibitor with cytotoxicity values around 4–5 μM. Given the potency and drug-like character of these lead compounds, further studies, including cellular activity assays and DMPK analysis, are justified

    Identification of Clinically Viable Quinolinol Inhibitors of Botulinum Neurotoxin A Light Chain

    No full text
    Botulinum neurotoxins (BoNT) are the most potent toxins known and a significant bioterrorist threat. Few small molecule compounds have been identified that are active in cell-based or animal models, potentially due to toxin enzyme plasticity. Here we screened commercially available quinolinols, as well as synthesized hydroxyquinolines. Seventy-two compounds had IC<sub>50</sub> values below 10 μM, with the best compound exhibiting submicromolar inhibition (IC<sub>50</sub> = 0.8 μM). Structure–activity relationship trends showed that the enzyme tolerates various substitutions at R<sub>1</sub> but has a clear preference for bulky aryl amide groups at R<sub>2</sub>, while methylation at R<sub>3</sub> increased inhibitor potency. Evaluation of the most potent compounds in an ADME panel showed that these compounds possess poor solubility at pH 6.8, but display excellent solubility at low pH, suggesting that oral dosing may be possible. Our data show the potential of quinolinol compounds as BoNT therapeutics due to their good in vitro potencies and favorable ADME properties
    corecore