22 research outputs found

    Addressing the Gender Gap in Distinguished Speakers at Professional Ecology Conferences

    Get PDF
    Keynote and plenary speakers at professional conferences serve as highly visible role models for early-career scientists and provide recognition of scientific excellence. This recognition may be particularly important for women, who are underrepresented in senior positions in the biological sciences. To evaluate whether conferences fulfill this potential, we examined distinguished speakers at North American ecology conferences between 2000 and 2015 and compared these data with the percentage of women ecologists at diverse career stages. We found that 15%–35% (x = 28%, n = 809) of the distinguished speakers were women, which is significantly lower than the percentage of female ecology graduate students (x = 55%, n = 26,802) but consistent with the percentage of women in assistant- and associate-faculty positions. We recommend that conference organizers institute policies to enhance speaker gender balance, to provide support for speakers with family responsibilities, and to actively monitor gender-related trends in their societies to achieve the equitable representation of women in distinguished speaking roles

    Addressing the Gender Gap in Distinguished Speakers at Professional Ecology Conferences

    Get PDF
    Keynote and plenary speakers at professional conferences serve as highly visible role models for early-career scientists and provide recognition of scientific excellence. This recognition may be particularly important for women, who are underrepresented in senior positions in the biological sciences. To evaluate whether conferences fulfill this potential, we examined distinguished speakers at North American ecology conferences between 2000 and 2015 and compared these data with the percentage of women ecologists at diverse career stages. We found that 15%–35% (x = 28%, n = 809) of the distinguished speakers were women, which is significantly lower than the percentage of female ecology graduate students (x = 55%, n = 26,802) but consistent with the percentage of women in assistant- and associate-faculty positions. We recommend that conference organizers institute policies to enhance speaker gender balance, to provide support for speakers with family responsibilities, and to actively monitor gender-related trends in their societies to achieve the equitable representation of women in distinguished speaking roles

    Harnessing the NEON data revolution to advance open environmental science with a diverse and data-capable community

    Get PDF
    It is a critical time to reflect on the National Ecological Observatory Network (NEON) science to date as well as envision what research can be done right now with NEON (and other) data and what training is needed to enable a diverse user community. NEON became fully operational in May 2019 and has pivoted from planning and construction to operation and maintenance. In this overview, the history of and foundational thinking around NEON are discussed. A framework of open science is described with a discussion of how NEON can be situated as part of a larger data constellation—across existing networks and different suites of ecological measurements and sensors. Next, a synthesis of early NEON science, based on >100 existing publications, funded proposal efforts, and emergent science at the very first NEON Science Summit (hosted by Earth Lab at the University of Colorado Boulder in October 2019) is provided. Key questions that the ecology community will address with NEON data in the next 10 yr are outlined, from understanding drivers of biodiversity across spatial and temporal scales to defining complex feedback mechanisms in human–environmental systems. Last, the essential elements needed to engage and support a diverse and inclusive NEON user community are highlighted: training resources and tools that are openly available, funding for broad community engagement initiatives, and a mechanism to share and advertise those opportunities. NEON users require both the skills to work with NEON data and the ecological or environmental science domain knowledge to understand and interpret them. This paper synthesizes early directions in the community’s use of NEON data, and opportunities for the next 10 yr of NEON operations in emergent science themes, open science best practices, education and training, and community building

    Dataset associated with “Context dependency of disease-mediated competitive release in bat assemblages following white-nose syndrome”

    No full text
    Dataset of bat acoustic detections across four study areas in the US to study the impact of white-nose syndrome on bat community interactions. Data collected from 2003-2017 at four study locations in the United States, including Fenrnow Experimental Forest, WV; Fort Pickett, VA; Fort Drum, NY; two locations in Wisconsin.White-nose syndrome (WNS) has caused dramatic declines of several cave-hibernating bat species in North America since 2006, which has increased the activity of non-susceptible species in some geographic areas or during times of night formerly occupied by susceptible species - indicative of disease-mediated competitive release (DMCR). Yet, this pattern has not been evaluated across multiple bat assemblages simultaneously or across multiple years since WNS onset. We evaluated whether WNS altered spatial and temporal niche partitioning in bat assemblages at four locations in the eastern United States using long-term datasets of bat acoustic activity collected before and after WNS arrival. Activity of WNS-susceptible bat species decreased by 79-98% from pre-WNS levels across the four study locations, but only one of our four study sites provided strong evidence supporting the DMCR hypothesis in bats post-WNS. These results suggest that DMCR is likely dependent on the relative difference in activity by susceptible and non-susceptible species groups pre-WNS and the relative decline of susceptible species post-WNS allowing for competitive release, as well as the amount of time that had elapsed post-WNS. Our findings challenge the generality of WNS-mediated competitive release between susceptible and non-susceptible species and further highlight declining activity of some non-susceptible species, especially Lasiurus borealis, across three of four locations in the eastern US. These results underscore the broader need for conservation efforts to address the multiple potential interacting drivers of bat declines on both WNS susceptible and non-susceptible species.Funding for this study was provided by the U.S. Fish and Wildlife Service White-nose Syndrome Grant Program Agreement #4500900398 to the USGS South Carolina Cooperative Fish and Wildlife Research Unit and the Virginia Cooperative Fish and Wildlife Research Unit. Additional support for work at Fort Drum came from the U.S. Army Corps of Engineers’ Cooperative Agreement W9126G-15-2-0005 through the Southern Appalachian Cooperative Ecosystems Study Unit Program to the Virginia Tech Department of Fish and Wildlife Conservation. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government

    Inequalities in noise will affect urban wildlife

    No full text
    Understanding how systemic biases influence local ecological communities is essential for developing just and equitable environmental practices that prioritize both human and wildlife well-being. With over 270 million residents inhabiting urban areas in the United States, the socioecological consequences of racially targeted zoning, such as redlining, need to be considered in urban planning. There is a growing body of literature documenting the relationships between redlining and the inequitable distribution of environmental harms and goods, green space cover and pollutant exposure. However, it remains unknown whether historical redlining affects the distribution of urban noise or whether inequitable noise drives an ecological change in urban environments. Here we conducted a spatial analysis of how urban noise corresponds to the distribution of redlining categories and a systematic literature review to summarize the effects of noise on wildlife in urban landscapes. We found strong evidence to indicate that noise is inequitably distributed in redlined urban communities across the United States, and that inequitable noise may drive complex biological responses across diverse urban wildlife, reinforcing the interrelatedness of socioecological outcomes. These findings lay a foundation for future research that advances relationships between acoustic and urban ecology through centring equity and challenging systems of oppression in wildlife studies

    Fig 2 -

    No full text
    Although staff members in the Department of Zoology & Physiology at the University of Wyoming felt that (a) institutional commitment to DEIJ was less important than did faculty and graduate students, none of the employment categories (b) agreed that the current departmental commitment to DEIJ-related issues is sufficient. Mean scores on the y-axis represent indices derived from factor analysis of responses within the Importance of DEIJ section. Larger, filled circles with error bars indicate mean ± SE, whereas smaller, open circles display the raw data.</p
    corecore