52 research outputs found

    Validation of Automated Data Abstraction for SCCM Discovery VIRUS COVID-19 Registry: Practical EHR Export Pathways (VIRUS-PEEP)

    Get PDF
    BACKGROUND: The gold standard for gathering data from electronic health records (EHR) has been manual data extraction; however, this requires vast resources and personnel. Automation of this process reduces resource burdens and expands research opportunities. OBJECTIVE: This study aimed to determine the feasibility and reliability of automated data extraction in a large registry of adult COVID-19 patients. MATERIALS AND METHODS: This observational study included data from sites participating in the SCCM Discovery VIRUS COVID-19 registry. Important demographic, comorbidity, and outcome variables were chosen for manual and automated extraction for the feasibility dataset. We quantified the degree of agreement with Cohen\u27s kappa statistics for categorical variables. The sensitivity and specificity were also assessed. Correlations for continuous variables were assessed with Pearson\u27s correlation coefficient and Bland-Altman plots. The strength of agreement was defined as almost perfect (0.81-1.00), substantial (0.61-0.80), and moderate (0.41-0.60) based on kappa statistics. Pearson correlations were classified as trivial (0.00-0.30), low (0.30-0.50), moderate (0.50-0.70), high (0.70-0.90), and extremely high (0.90-1.00). MEASUREMENTS AND MAIN RESULTS: The cohort included 652 patients from 11 sites. The agreement between manual and automated extraction for categorical variables was almost perfect in 13 (72.2%) variables (Race, Ethnicity, Sex, Coronary Artery Disease, Hypertension, Congestive Heart Failure, Asthma, Diabetes Mellitus, ICU admission rate, IMV rate, HFNC rate, ICU and Hospital Discharge Status), and substantial in five (27.8%) (COPD, CKD, Dyslipidemia/Hyperlipidemia, NIMV, and ECMO rate). The correlations were extremely high in three (42.9%) variables (age, weight, and hospital LOS) and high in four (57.1%) of the continuous variables (Height, Days to ICU admission, ICU LOS, and IMV days). The average sensitivity and specificity for the categorical data were 90.7 and 96.9%. CONCLUSION AND RELEVANCE: Our study confirms the feasibility and validity of an automated process to gather data from the EHR

    Validation of automated data abstraction for SCCM discovery VIRUS COVID-19 registry: practical EHR export pathways (VIRUS-PEEP)

    Get PDF
    BackgroundThe gold standard for gathering data from electronic health records (EHR) has been manual data extraction; however, this requires vast resources and personnel. Automation of this process reduces resource burdens and expands research opportunities.ObjectiveThis study aimed to determine the feasibility and reliability of automated data extraction in a large registry of adult COVID-19 patients.Materials and methodsThis observational study included data from sites participating in the SCCM Discovery VIRUS COVID-19 registry. Important demographic, comorbidity, and outcome variables were chosen for manual and automated extraction for the feasibility dataset. We quantified the degree of agreement with Cohen’s kappa statistics for categorical variables. The sensitivity and specificity were also assessed. Correlations for continuous variables were assessed with Pearson’s correlation coefficient and Bland–Altman plots. The strength of agreement was defined as almost perfect (0.81–1.00), substantial (0.61–0.80), and moderate (0.41–0.60) based on kappa statistics. Pearson correlations were classified as trivial (0.00–0.30), low (0.30–0.50), moderate (0.50–0.70), high (0.70–0.90), and extremely high (0.90–1.00).Measurements and main resultsThe cohort included 652 patients from 11 sites. The agreement between manual and automated extraction for categorical variables was almost perfect in 13 (72.2%) variables (Race, Ethnicity, Sex, Coronary Artery Disease, Hypertension, Congestive Heart Failure, Asthma, Diabetes Mellitus, ICU admission rate, IMV rate, HFNC rate, ICU and Hospital Discharge Status), and substantial in five (27.8%) (COPD, CKD, Dyslipidemia/Hyperlipidemia, NIMV, and ECMO rate). The correlations were extremely high in three (42.9%) variables (age, weight, and hospital LOS) and high in four (57.1%) of the continuous variables (Height, Days to ICU admission, ICU LOS, and IMV days). The average sensitivity and specificity for the categorical data were 90.7 and 96.9%.Conclusion and relevanceOur study confirms the feasibility and validity of an automated process to gather data from the EHR

    Metabolic Syndrome and Acute Respiratory Distress Syndrome in Hospitalized Patients With COVID-19

    Get PDF
    Importance: Obesity, diabetes, and hypertension are common comorbidities in patients with severe COVID-19, yet little is known about the risk of acute respiratory distress syndrome (ARDS) or death in patients with COVID-19 and metabolic syndrome. Objective: To determine whether metabolic syndrome is associated with an increased risk of ARDS and death from COVID-19. Design, setting, and participants: This multicenter cohort study used data from the Society of Critical Care Medicine Discovery Viral Respiratory Illness Universal Study collected from 181 hospitals across 26 countries from February 15, 2020, to February 18, 2021. Outcomes were compared between patients with metabolic syndrome (defined as ≥3 of the following criteria: obesity, prediabetes or diabetes, hypertension, and dyslipidemia) and a control population without metabolic syndrome. Participants included adult patients hospitalized for COVID-19 during the study period who had a completed discharge status. Data were analyzed from February 22 to October 5, 2021. Exposures: Exposures were SARS-CoV-2 infection, metabolic syndrome, obesity, prediabetes or diabetes, hypertension, and/or dyslipidemia. Main outcomes and measures: The primary outcome was in-hospital mortality. Secondary outcomes included ARDS, intensive care unit (ICU) admission, need for invasive mechanical ventilation, and length of stay (LOS). Results: Among 46 441 patients hospitalized with COVID-19, 29 040 patients (mean [SD] age, 61.2 [17.8] years; 13 059 [45.0%] women and 15713 [54.1%] men; 6797 Black patients [23.4%], 5325 Hispanic patients [18.3%], and 16 507 White patients [57.8%]) met inclusion criteria. A total of 5069 patients (17.5%) with metabolic syndrome were compared with 23 971 control patients (82.5%) without metabolic syndrome. In adjusted analyses, metabolic syndrome was associated with increased risk of ICU admission (adjusted odds ratio [aOR], 1.32 [95% CI, 1.14-1.53]), invasive mechanical ventilation (aOR, 1.45 [95% CI, 1.28-1.65]), ARDS (aOR, 1.36 [95% CI, 1.12-1.66]), and mortality (aOR, 1.19 [95% CI, 1.08-1.31]) and prolonged hospital LOS (median [IQR], 8.0 [4.2-15.8] days vs 6.8 [3.4-13.0] days; P \u3c .001) and ICU LOS (median [IQR], 7.0 [2.8-15.0] days vs 6.4 [2.7-13.0] days; P \u3c .001). Each additional metabolic syndrome criterion was associated with increased risk of ARDS in an additive fashion (1 criterion: 1147 patients with ARDS [10.4%]; P = .83; 2 criteria: 1191 patients with ARDS [15.3%]; P \u3c .001; 3 criteria: 817 patients with ARDS [19.3%]; P \u3c .001; 4 criteria: 203 patients with ARDS [24.3%]; P \u3c .001). Conclusions and relevance: These findings suggest that metabolic syndrome was associated with increased risks of ARDS and death in patients hospitalized with COVID-19. The association with ARDS was cumulative for each metabolic syndrome criteria present
    • …
    corecore