11 research outputs found

    Standard Siren Cosmology with Gravitational Waves from Binary Black Hole Mergers in Active Galaxy Nuclei

    Full text link
    The detection of gravitational waves (GW) with an electromagnetic counterpart enabled the first Hubble Constant H0H_0 measurement through the standard siren method. Current constraints suggest that ∌20−80%\sim 20-80\% of LIGO/Virgo/KAGRA (LVK) Binary Black Hole (BBH) mergers occur in Active Galactic Nuclei (AGN) disks. The claim for a possible association of several BBH mergers with flaring AGNs suggests that cosmological analyses using BBH and AGNs might be promising. We explore standard siren analyses through a method that takes into account the presence of background flaring AGNs, without requiring a unique host galaxy identification, and apply it to realistic GW simulations. Depending on the fraction of LVK BBHs that induce flares, we expect to constrain H0H_0 at the ∌3.5−7%\sim 3.5-7\% (∌2.5−5%\sim 2.5-5\%) precision with ∌2\sim 2 years or ∌160\sim 160 events (∌1\sim 1 year or 500500 events) of LVK at design (A+) sensitivity, assuming that systematic BBH follow-up searches are performed. Assuming a more restrictive Ωm\Omega_{\rm m} prior and that at least 20%20\% of BBHs produces detectable flares, we may reach a 3%3\% (2%2\%) precision in H0H_0 after 2 (1) year of LVK at design (A+) sensitivity. We also show that a ∌5−10%\sim 5-10\% precision is possible with complete AGN catalogs and 1 year of LVK run, without the need of time-critical follow-up observations.Comment: 14 pages, 5 figure

    Deep-pretrained-FWI: combining supervised learning with physics-informed neural network

    Full text link
    An accurate velocity model is essential to make a good seismic image. Conventional methods to perform Velocity Model Building (VMB) tasks rely on inverse methods, which, despite being widely used, are ill-posed problems that require intense and specialized human supervision. Convolutional Neural Networks (CNN) have been extensively investigated as an alternative to solve the VMB task. Two main approaches were investigated in the literature: supervised training and Physics-Informed Neural Networks (PINN). Supervised training presents some generalization issues since structures, and velocity ranges must be similar in training and test set. Some works integrated Full-waveform Inversion (FWI) with CNN, defining the problem of VMB in the PINN framework. In this case, the CNN stabilizes the inversion, acting like a regularizer and avoiding local minima-related problems and, in some cases, sparing an initial velocity model. Our approach combines supervised and physics-informed neural networks by using transfer learning to start the inversion. The pre-trained CNN is obtained using a supervised approach based on training with a reduced and simple data set to capture the main velocity trend at the initial FWI iterations. We show that transfer learning reduces the uncertainties of the process, accelerates model convergence, and improves the final scores of the iterative process.Comment: Paper present at machine Learning and the Physical Sciences workshop, NeurIPS 202

    Deep Learning assessment of galaxy morphology in S-PLUS Data Release 1

    Get PDF
    The morphological diversity of galaxies is a relevant probe of galaxy evolution and cosmological structure formation, but the classification of galaxies in large sky surveys is becoming a significant challenge. We use data from the Stripe-82 area observed by the Southern Photometric Local Universe Survey (S-PLUS) in 12 optical bands, and present a catalogue of the morphologies of galaxies brighter than r = 17 mag determined both using a novel multiband morphometric fitting technique and Convolutional Neural Networks (CNNs) for computer vision. Using the CNNs, we find that, compared to our baseline results with three bands, the performance increases when using 5 broad and 3 narrow bands, but is poorer when using the full 12 band S-PLUS image set. However, the best result is still achieved with just three optical bands when using pre-trained network weights from an ImageNet data set. These results demonstrate the importance of using prior knowledge about neural network weights based on training in unrelated, extensive data sets, when available. Our catalogue contains 3274 galaxies in Stripe-82 that are not present in Galaxy Zoo 1 (GZ1), and we also provide our classifications for 4686 galaxies that were considered ambiguous in GZ1. Finally, we present a prospect of a novel way to take advantage of 12 band information for morphological classification using morphometric features, and we release a model that has been pre-trained on several bands that could be adapted for classifications using data from other surveys. The morphological catalogues are publicly available.Facultad de Ciencias AstronĂłmicas y GeofĂ­sicasInstituto de AstrofĂ­sica de La Plat

    The Gravity Collective: A Search for the Electromagnetic Counterpart to the Neutron Star-Black Hole Merger GW190814

    Full text link
    We present optical follow-up imaging obtained with the Katzman Automatic Imaging Telescope, Las Cumbres Observatory Global Telescope Network, Nickel Telescope, Swope Telescope, and Thacher Telescope of the LIGO/Virgo gravitational wave (GW) signal from the neutron star-black hole (NSBH) merger GW190814. We searched the GW190814 localization region (19 deg2^{2} for the 90th percentile best localization), covering a total of 51 deg2^{2} and 94.6% of the two-dimensional localization region. Analyzing the properties of 189 transients that we consider as candidate counterparts to the NSBH merger, including their localizations, discovery times from merger, optical spectra, likely host-galaxy redshifts, and photometric evolution, we conclude that none of these objects are likely to be associated with GW190814. Based on this finding, we consider the likely optical properties of an electromagnetic counterpart to GW190814, including possible kilonovae and short gamma-ray burst afterglows. Using the joint limits from our follow-up imaging, we conclude that a counterpart with an rr-band decline rate of 0.68 mag day−1^{-1}, similar to the kilonova AT 2017gfo, could peak at an absolute magnitude of at most −17.8-17.8 mag (50% confidence). Our data are not constraining for ''red'' kilonovae and rule out ''blue'' kilonovae with M>0.5M⊙M>0.5 M_{\odot} (30% confidence). We strongly rule out all known types of short gamma-ray burst afterglows with viewing angles <<17∘^{\circ} assuming an initial jet opening angle of ∌\sim5.2∘5.2^{\circ} and explosion energies and circumburst densities similar to afterglows explored in the literature. Finally, we explore the possibility that GW190814 merged in the disk of an active galactic nucleus, of which we find four in the localization region, but we do not find any candidate counterparts among these sources.Comment: 86 pages, 9 figure

    Deep-tomography: iterative velocity model building with deep learning

    Full text link
    The accurate and fast estimation of velocity models is crucial in seismic imaging. Conventional methods, like Tomography and Full-Waveform Inversion (FWI), obtain appropriate velocity models; however, they require intense and specialized human supervision and consume much time and computational resources. In recent years, some works investigated deep learning(DL) algorithms to obtain the velocity model directly from shots or migrated angle panels, obtaining encouraging predictions of synthetic models. This paper proposes a new flow to increase the complexity of velocity models recovered with DL. Inspired by the conventional geophysical velocity model building methods, instead of predicting the entire model in one step, we predict the velocity model iteratively. We implement the iterative nature of the process when, for each iteration, we train the DL algorithm to determine the velocity model with a certain level of precision/resolution for the next iteration; we name this process as Deep-Tomography. Starting from an initial model that roughly approaches the true model, the Deep-Tomography is able to predict an appropriate final model, even in complete unseen data, like the Marmousi model.Comment: 27 pages, 9 figures. First manuscript version submitted to Geophysical Journal International in February 202

    The Gravity Collective: A Search for the Electromagnetic Counterpart to the Neutron Star-Black Hole Merger GW190814

    No full text
    We present optical follow-up imaging obtained with the Katzman Automatic Imaging Telescope, Las Cumbres Observatory Global Telescope Network, Nickel Telescope, Swope Telescope, and Thacher Telescope of the LIGO/Virgo gravitational wave (GW) signal from the neutron star-black hole (NSBH) merger GW190814. We searched the GW190814 localization region (19 deg2 for the 90th percentile best localization), covering a total of 51 deg2 and 94.6% of the two-dimensional localization region. Analyzing the properties of 189 transients that we consider as candidate counterparts to the NSBH merger, including their localizations, discovery times from merger, optical spectra, likely host galaxy redshifts, and photometric evolution, we conclude that none of these objects are likely to be associated with GW190814. Based on this finding, we consider the likely optical properties of an electromagnetic counterpart to GW190814, including possible kilonovae and short gamma-ray burst afterglows. Using the joint limits from our follow-up imaging, we conclude that a counterpart with an r-band decline rate of 0.68 mag day-1, similar to the kilonova AT 2017gfo, could peak at an absolute magnitude of at most -17.8 mag (50% confidence). Our data are not constraining for red kilonovae and rule out blue kilonovae with M \u3e 0.5 M o˙ (30% confidence). We strongly rule out all known types of short gamma-ray burst afterglows with viewing angles \u3c17° assuming an initial jet opening angle of ∌5.°2 and explosion energies and circumburst densities similar to afterglows explored in the literature. Finally, we explore the possibility that GW190814 merged in the disk of an active galactic nucleus, of which we find four in the localization region, but we do not find any candidate counterparts among these sources

    Designing an Optimal Kilonova Search using DECam for Gravitational Wave Events

    No full text
    International audienceWe address the problem of optimally identifying all kilonovae detected via gravitational wave emission in the upcoming LIGO/Virgo/KAGRA Collaboration observing run, O4, which is expected to be sensitive to a factor of ∌7\sim 7 more Binary Neutron Stars alerts than previously. Electromagnetic follow-up of all but the brightest of these new events will require >1>1 meter telescopes, for which limited time is available. We present an optimized observing strategy for the Dark Energy Camera during O4. We base our study on simulations of gravitational wave events expected for O4 and wide-prior kilonova simulations. We derive the detectabilities of events for realistic observing conditions. We optimize our strategy for confirming a kilonova while minimizing telescope time. For a wide range of kilonova parameters, corresponding to a fainter kilonova compared to GW170817/AT2017gfo we find that, with this optimal strategy, the discovery probability for electromagnetic counterparts with the Dark Energy Camera is ∌80%\sim 80\% at the nominal binary neutron star gravitational wave detection limit for the next LVK observing run (190 Mpc), which corresponds to a ∌30%\sim 30\% improvement compared to the strategy adopted during the previous observing run. For more distant events (∌330\sim 330 Mpc), we reach a ∌60%\sim 60\% probability of detection, a factor of ∌2\sim 2 increase. For a brighter kilonova model dominated by the blue component that reproduces the observations of GW170817/AT2017gfo, we find that we can reach ∌90%\sim 90\% probability of detection out to 330 Mpc, representing an increase of ∌20%\sim 20 \%, while also reducing the total telescope time required to follow-up events by ∌20%\sim 20\%

    Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies

    No full text
    The standard Λ Cold Dark Matter (ΛCDM) cosmological model provides a good description of a wide range of astrophysical and cosmological data. However, there are a few big open questions that make the standard model look like an approximation to a more realistic scenario yet to be found. In this paper, we list a few important goals that need to be addressed in the next decade, taking into account the current discordances between the different cosmological probes, such as the disagreement in the value of the Hubble constant H0, the σ8–S8 tension, and other less statistically significant anomalies. While these discordances can still be in part the result of systematic errors, their persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the necessity for new physics or generalisations beyond the standard model. In this paper, we focus on the 5.0σ tension between the Planck CMB estimate of the Hubble constant H0 and the SH0ES collaboration measurements. After showing the H0 evaluations made from different teams using different methods and geometric calibrations, we list a few interesting new physics models that could alleviate this tension and discuss how the next decade's experiments will be crucial. Moreover, we focus on the tension of the Planck CMB data with weak lensing measurements and redshift surveys, about the value of the matter energy density Ωm, and the amplitude or rate of the growth of structure (σ8,fσ8). We list a few interesting models proposed for alleviating this tension, and we discuss the importance of trying to fit a full array of data with a single model and not just one parameter at a time. Additionally, we present a wide range of other less discussed anomalies at a statistical significance level lower than the H0–S8 tensions which may also constitute hints towards new physics, and we discuss possible generic theoretical approaches that can collectively explain the non-standard nature of these signals. Finally, we give an overview of upgraded experiments and next-generation space missions and facilities on Earth that will be of crucial importance to address all these open questions
    corecore