136 research outputs found

    Características da carcaça e dos componentes não carcaça de cordeiros oriundos de parto simples ou duplo.

    Get PDF
    Resumo: Um experimento foi conduzido com o objetivo de avaliar as características da carcaça e dos componentes não carcaça de cordeiros nascidos de parto simples ou duplo. Dezesseis cordeiros mestiços Texel × Ile de France, machos não castrados, foram desmamados aos 56 dias de idade e abatidos com aproximadamente 28kg de peso corporal. Imediatamente após o abate, cada componente corporal foi pesado separadamente, sendo as carcaças avaliadas após 24 horas de refrigeração a 2°C. Os cordeiros oriundos de parto simples apresentaram superioridade no peso e nos rendimentos da carcaça, além de maior área de olho de lombo. Por outro lado, proporcionalmente ao peso de corpo vazio, o rúmen é maior em cordeiros nascidos de parto duplo, o que resulta incremento da proporção de conteúdo gastrintestinal ao abate. Os resultados deste estudo indicam que, quando abatidos a um mesmo peso, cordeiros oriundos de parto simples possuem carcaças de melhor qualidade, em comparação a cordeiros nascidos de parto gemelar. [Carcass and non-carcass traits of single and twin lambs]. Abstract: An experiment was conducted to evaluate the carcass and non-carcass traits of single and twin lambs. Sixteen Texel × Ile de France crossbred, non-castrated male lambs were weaned at 56 days of age and slaughtered at 28kg of body weight. Immediately after the slaughter each body component was individually weighed, while carcasses were evaluated after a 24h period of refrigeration at 2°C. Single lambs presented higher values of carcass weight and carcass dressing percentage. Moreover, the Longissimus muscle area was also greater for single lambs. On the other hand, as a proportion of empty body weight, rumen was greater for twin lambs, increasing their gastrointestinal content at slaughter. The results of this study indicated that at a same slaughter weight single lambs have better quality carcasses in comparison with those from twin lambs

    Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0

    Get PDF
    Microbial genomes are available at an ever-increasing pace, as cultivation and sequencing become cheaper and obtaining metagenome-assembled genomes (MAGs) becomes more effective. Phylogenetic placement methods to contextualize hundreds of thousands of genomes must thus be efficiently scalable and sensitive from closely related strains to divergent phyla. We present PhyloPhlAn 3.0, an accurate, rapid, and easy-to-use method for large-scale microbial genome characterization and phylogenetic analysis at multiple levels of resolution. PhyloPhlAn 3.0 can assign genomes from isolate sequencing or MAGs to species-level genome bins built from >230,000 publically available sequences. For individual clades of interest, it reconstructs strain-level phylogenies from among the closest species using clade-specific maximally informative markers. At the other extreme of resolution, it scales to large phylogenies comprising >17,000 microbial species. Examples including Staphylococcus aureus isolates, gut metagenomes, and meta-analyses demonstrate the ability of PhyloPhlAn 3.0 to support genomic and metagenomic analyses

    Theoretical study of the insulating oxides and nitrides: SiO2, GeO2, Al2O3, Si3N4, and Ge3N4

    Get PDF
    An extensive theoretical study is performed for wide bandgap crystalline oxides and nitrides, namely, SiO_{2}, GeO_{2}, Al_{2}O_{3}, Si_{3}N_{4}, and Ge_{3}N_{4}. Their important polymorphs are considered which are for SiO_{2}: α\alpha-quartz, α\alpha- and β\beta-cristobalite and stishovite, for GeO_{2}: α\alpha-quartz, and rutile, for Al_{2}O_{3}: α\alpha-phase, for Si_{3}N_{4} and Ge_{3}N_{4}: α\alpha- and β\beta-phases. This work constitutes a comprehensive account of both electronic structure and the elastic properties of these important insulating oxides and nitrides obtained with high accuracy based on density functional theory within the local density approximation. Two different norm-conserving \textit{ab initio} pseudopotentials have been tested which agree in all respects with the only exception arising for the elastic properties of rutile GeO_{2}. The agreement with experimental values, when available, are seen to be highly satisfactory. The uniformity and the well convergence of this approach enables an unbiased assessment of important physical parameters within each material and among different insulating oxide and nitrides. The computed static electric susceptibilities are observed to display a strong correlation with their mass densities. There is a marked discrepancy between the considered oxides and nitrides with the latter having sudden increase of density of states away from the respective band edges. This is expected to give rise to excessive carrier scattering which can practically preclude bulk impact ionization process in Si_{3}N_{4} and Ge_{3}N_{4}.Comment: Published version, 10 pages, 8 figure

    The Greenland Ice Sheet Project 2 Depth-age Scale: Methods and Results

    Get PDF
    The Greenland Ice Sheet Project 2 (GISP2) depth-age scale is presented based on a multiparameter continuous count approach, to a depth of 2800 m, using a systematic combination of parameters that have never been used to this extent before. The ice at 2800 m is dated at 110,000 years B.P. with an estimated error ranging from 1 to 10% in the top 2500 m of the core and averaging 20% between 2500 and 2800 m. Parameters used to date the core include visual stratigraphy, oxygen isotopic ratios of the ice, electrical conductivity measurements, laser-light scattering from dust, volcanic signals, and major ion chemistry. GISP2 ages for major climatic events agree with independent ages based on varve chronologies, calibrated radiocarbon dates, and other techniques within the combined uncertainties. Good agreement also is obtained with Greenland Ice Core Project ice core dates and with the SPECMAP marine timescale after correlation through the δ18O of O2. Although the core is deformed below 2800 m and the continuity of the record is unclear, we attempted to date this section of the core on the basis of the laser-light scattering of dust in the ice

    Chemical, Structural, and Morphological Changes of a MoVTeNb Catalyst during Oxidative Dehydrogenation of Ethane

    Full text link
    MoVTeNb mixed oxide, a highly active and selective catalyst for the oxidative dehydrogenation of ethane to produce ethylene, exhibits the so-called M1 and M2 crystalline phases. The thermal stability of the MoVTeNb catalytic system was assessed under varying reaction conditions; to this end, the catalyst was exposed to several reaction temperatures spanning from 440 to 550 °C. Both the pristine and spent materials were analyzed by several characterization techniques. The catalyst was stable below 500 °C; a reaction temperature of ≥500 °C brings about the removal of tellurium from the intercalated framework channels of the M1 crystalline phase. Rietveld refinement of X-ray diffraction patterns and microscopy results showed that the tellurium loss causes the progressive partial destruction of the M1 phase, thus decreasing the number of active sites and forming a MoO2 crystalline phase, which is inactive for this reaction. Raman spectroscopy confirmed the MoO2 phase development as a function of reaction temperature. From highresolution transmission electron microscopy and energy-dispersive X-ray spectroscopy analyses it was noticed that tellurium departure occurs preferentially from the end sides of the needlelike M1 crystals, across the [001] plane. Detailed analysis of a solid deposited at the reactor outlet showrf that it consisted mainly of metallic tellurium, suggesting that the tellurium detachment occurs via reduction of Te4+ to Te0 due to a combination of reaction temperature and feed composition. Thus, in order to sustain the catalytic performance exhibited by MoVTeNb mixed oxide, hot spots along the reactor bed should be avoided or controlled, maintaining the catalytic bed temperature below 500 °C.This work was financially supported by the Instituto Mexicano del Petroleo.Valente, JS.; Armendariz-Herrera, H.; Quintana-Solorzano, R.; Del Angel, P.; Nava, N.; Masso Ramírez, A.; López Nieto, JM. (2014). Chemical, Structural, and Morphological Changes of a MoVTeNb Catalyst during Oxidative Dehydrogenation of Ethane. ACS Catalysis. 4:1292-1301. doi:10.1021/cs500143jS12921301
    corecore