9,347 research outputs found

    Ultraviolet observations of the X-ray photoionized wind of Cygnus X-1 during X-ray soft/high state

    Full text link
    (Shortened) Ultraviolet observations of the black hole X-ray binary Cygnus X-1 were obtained using the STIS on HSTubble. We detect P Cygni line features show strong, broad absorption components when the X-ray source is behind the companion star and noticeably weaker absorption when the X-ray source is between us and the companion star. We fit the P Cygni profiles using the SEI method applied to a spherically symmetric stellar wind subject to X-ray photoionization from the black hole. The Si IV doublet provides the most reliable estimates of the parameters of the wind and X-ray illumination. The velocity vv increases with radius rr according to v=v∞(1−r⋆/r)βv=v_\infty(1-r_\star/r)^\beta, withβ≈0.75\beta\approx0.75 and v∞≈1420v_\infty\approx1420 km s−1^{-1}.The microturbulent velocity was ≈160\approx160 km s−1^{-1}. Our fit implies a ratio of X-ray luminosity to wind mass-loss rate of LX,38/M˙−6≈0.33_{X,38}/\dot M_{-6} \approx 0.33, measured at M˙−6\dot M_{-6} = 4.8. Our models determine parameters that may be used to estimate the accretion rate onto the black hole and independently predict the X-ray luminosity. Our predicted Lx_x matches that determined by contemporaneous RXTE ASM remarkably well, but is a factor of 3 lower than the rate according to Bondi-Hoyle-Littleton spherical wind accretion. We suggest that some of the energy of accretion may go into powering a jet.Comment: 34 pages, 21 figures, 4 tables, accepted for publication in Ap

    Multilevel blocking approach to the fermion sign problem in path-integral Monte Carlo simulations

    Full text link
    A general algorithm toward the solution of the fermion sign problem in finite-temperature quantum Monte Carlo simulations has been formulated for discretized fermion path integrals with nearest-neighbor interactions in the Trotter direction. This multilevel approach systematically implements a simple blocking strategy in a recursive manner to synthesize the sign cancellations among different fermionic paths throughout the whole configuration space. The practical usefulness of the method is demonstrated for interacting electrons in a quantum dot.Comment: 4 pages RevTeX, incl. two figure

    Phase Transitions in Quantum Dots

    Get PDF
    We perform Hartree-Fock calculations to show that quantum dots (i.e. two dimensional systems of up to twenty interacting electrons in an external parabolic potential) undergo a gradual transition to a spin-polarized Wigner crystal with increasing magnetic field strength. The phase diagram and ground state energies have been determined. We tried to improve the ground state of the Wigner crystal by introducing a Jastrow ansatz for the wavefunction and performing a variational Monte Carlo calculation. The existence of so called magic numbers was also investigated. Finally, we also calculated the heat capacity associated with the rotational degree of freedom of deformed many-body states.Comment: 14 pages, 7 postscript figure

    The Optimal Gravitational Lens Telescope

    Get PDF
    Given an observed gravitational lens mirage produced by a foreground deflector (cf. galaxy, quasar, cluster,...), it is possible via numerical lens inversion to retrieve the real source image, taking full advantage of the magnifying power of the cosmic lens. This has been achieved in the past for several remarkable gravitational lens systems. Instead, we propose here to invert an observed multiply imaged source directly at the telescope using an ad-hoc optical instrument which is described in the present paper. Compared to the previous method, this should allow one to detect fainter source features as well as to use such an optimal gravitational lens telescope to explore even fainter objects located behind and near the lens. Laboratory and numerical experiments illustrate this new approach

    The PubChem chemical structure sketcher

    Get PDF
    PubChem is an important public, Web-based information source for chemical and bioactivity information. In order to provide convenient structure search methods on compounds stored in this database, one mandatory component is a Web-based drawing tool for interactive sketching of chemical query structures. Web-enabled chemical structure sketchers are not new, being in existence for years; however, solutions available rely on complex technology like Java applets or platform-dependent plug-ins. Due to general policy and support incident rate considerations, Java-based or platform-specific sketchers cannot be deployed as a part of public NCBI Web services. Our solution: a chemical structure sketching tool based exclusively on CGI server processing, client-side JavaScript functions, and image sequence streaming. The PubChem structure editor does not require the presence of any specific runtime support libraries or browser configurations on the client. It is completely platform-independent and verified to work on all major Web browsers, including older ones without support for Web2.0 JavaScript objects

    Z2SAL: a translation-based model checker for Z

    No full text
    Despite being widely known and accepted in industry, the Z formal specification language has not so far been well supported by automated verification tools, mostly because of the challenges in handling the abstraction of the language. In this paper we discuss a novel approach to building a model-checker for Z, which involves implementing a translation from Z into SAL, the input language for the Symbolic Analysis Laboratory, a toolset which includes a number of model-checkers and a simulator. The Z2SAL translation deals with a number of important issues, including: mapping unbounded, abstract specifications into bounded, finite models amenable to a BDD-based symbolic checker; converting a non-constructive and piecemeal style of functional specification into a deterministic, automaton-based style of specification; and supporting the rich set-based vocabulary of the Z mathematical toolkit. This paper discusses progress made towards implementing as complete and faithful a translation as possible, while highlighting certain assumptions, respecting certain limitations and making use of available optimisations. The translation is illustrated throughout with examples; and a complete working example is presented, together with performance data

    Survival of low-birth-weight infants at Baragwanath Hospital - 1950 - 1996

    Get PDF
    Objectives. To examine changes in survival rates among lowbirth- weight (LBW) infants between the years 1950 and 1996:Methods. Survival figures were analysed for LBW infants managed at Baragwanath Hospital, a tertiary care centre in Soweto, Johannesburg, over four periods spanning five decades.Results. The overall mortality rates of LBW infants decreased markedly between the early 1950s and the period 1995/96. By the mid-1990s approximately four times the number of infants with birth weight less than 1 500 g were surviving compared with the early 1950s. The reduction in mortality rates occurred in all LBW groups during the first three decades. However, since 1981 infants who weighed less than 1 500 g at birth were the major contributors to the overall reduction in mortality. Between the years 1981/82 and 1995/96, survival increased significantly from 64% to 79% for infants with birth weight 1 000 - 1 499 g, and from 14% to 32% for those with birth weight less than 1 000 g. Since infants in the latter group were seldom offered mechanical ventilation or artificial surfactant, a large part of these increases in survival can be attributed. to improvement in the general level of care.Conclusion. There have been dramatic improvements in the survival of LBW infants over this time period at Baragwanath Hospital. Although newer interventions such as mechanical ventilation and artificial surfactant have played a significant role, improvement in care at primary and secondary levels has been of major importance

    Crossover from Fermi liquid to Wigner molecule behavior in quantum dots

    Full text link
    The crossover from weak to strong correlations in parabolic quantum dots at zero magnetic field is studied by numerically exact path-integral Monte Carlo simulations for up to eight electrons. By the use of a multilevel blocking algorithm, the simulations are carried out free of the fermion sign problem. We obtain a universal crossover only governed by the density parameter rsr_s. For rs>rcr_s>r_c, the data are consistent with a Wigner molecule description, while for rs<rcr_s<r_c, Fermi liquid behavior is recovered. The crossover value rc≈4r_c \approx 4 is surprisingly small.Comment: 4 pages RevTeX, 3 figures, corrected Tabl

    Performance of an Operating High Energy Physics Data Grid: D0SAR-Grid

    Full text link
    The D0 experiment at Fermilab's Tevatron will record several petabytes of data over the next five years in pursuing the goals of understanding nature and searching for the origin of mass. Computing resources required to analyze these data far exceed capabilities of any one institution. Moreover, the widely scattered geographical distribution of D0 collaborators poses further serious difficulties for optimal use of human and computing resources. These difficulties will exacerbate in future high energy physics experiments, like the LHC. The computing grid has long been recognized as a solution to these problems. This technology is being made a more immediate reality to end users in D0 by developing a grid in the D0 Southern Analysis Region (D0SAR), D0SAR-Grid, using all available resources within it and a home-grown local task manager, McFarm. We will present the architecture in which the D0SAR-Grid is implemented, the use of technology and the functionality of the grid, and the experience from operating the grid in simulation, reprocessing and data analyses for a currently running HEP experiment.Comment: 3 pages, no figures, conference proceedings of DPF04 tal

    Nonlinear Scattering of a Bose-Einstein Condensate on a Rectangular Barrier

    Full text link
    We consider the nonlinear scattering and transmission of an atom laser, or Bose-Einstein condensate (BEC) on a finite rectangular potential barrier. The nonlinearity inherent in this problem leads to several new physical features beyond the well-known picture from single-particle quantum mechanics. We find numerical evidence for a denumerably infinite string of bifurcations in the transmission resonances as a function of nonlinearity and chemical potential, when the potential barrier is wide compared to the wavelength of oscillations in the condensate. Near the bifurcations, we observe extended regions of near-perfect resonance, in which the barrier is effectively invisible to the BEC. Unlike in the linear case, it is mainly the barrier width, not the height, that controls the transmission behavior. We show that the potential barrier can be used to create and localize a dark soliton or dark soliton train from a phonon-like standing wave.Comment: 15 pages, 15 figures, new version includes clarification of definition of transmission coefficient in general nonlinear vs. linear cas
    • …
    corecore