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We perform Hartree-Fock calculations to show that quantum dots~i.e., two-dimensional systems of up to
twenty interacting electrons in an external parabolic potential! undergo a gradual transition to a spin-polarized
Wigner crystal with increasing magnetic-field strength. The phase diagram and ground-state energies have
been determined. We tried to improve the ground state of the Wigner crystal by introducing a Jastrow ansatz
for the wave function and performing a variational Monte Carlo calculation. The existence of so-called magic
numbers was also investigated. Finally, we also calculated the heat capacity associated with the rotational
degree of freedom of deformed many-body states.@S0163-1829~96!04544-4#

I. INTRODUCTION

Quantum dots have been the subject of recent intense ex-
perimental and theoretical research. The interest in these
nanostructures arises not only from possible new technologi-
cal applications, but also from the desire to understand the
fundamental physical problem of a few (m<300) interacting
electrons in an external potential and a strong magnetic field.

In a weak magnetic field electrons form a rotationally
symmetric state by occupying the lowest Fock-Darwin lev-
els. With increasing magnetic field, the behavior is deter-
mined by three basic mechanisms: the spin alignment of the
electrons~eventually resulting in a spin-polarized system!,
the Pauli principle~which causes the ground states of the
system to occur with certain ‘‘magic numbers’’ of the total
angular momentum1,2!, and finally the Coulomb interaction.
This latter makes the electron droplet susceptible to edge
excitations and bulk instabilities, as the electron-electron in-
teraction favors a larger area.3,4

The scenario above assumes an unbroken rotational sym-
metry. Questions concerning a high-field transition to so-
called Wigner molecules and crystals, in which electrons oc-
cupy fixed sites in a rotating frame and are therefore
localized, have been investigated by Maksym2 and Bolton
and Rössler.5 Maksym considers a ‘‘large angular momen-
tum limit’’ of systems of up to five electrons and describes
only excited states of integer angular momentum. He specu-
lates on the existence of ground-state Wigner molecules in
the large-field limit. Bolton and Ro¨ssler simulated up to 40
classical interacting point charges in an external parabolic
potential.

In this paper we consider the ground-state properties of up
to 20 electrons in the limit of a strong magnetic field. We
treat the full quantal problem by solving the Hartree-Fock
equations for the two-dimensional electron gas. After a brief
description of the well-known phases of the rotationally
symmetric case as they appear in the Hartree-Fock approxi-
mation, we present the gradual transition towards a Wigner
molecule and crystal; the various spatial configurations are
shown and the shell structure is compared to that of the clas-
sical calculation.5 We further describe a variational Monte

Carlo calculation that we performed to improve the wave
function by a Jastrow ansatz. Finally, we investigate the ro-
tational spectra associated with the breaking of the continu-
ous rotational symmetry; the heat capacity associated with
this new rotational degree of freedom is calculated.

II. THEORY

We considerm electrons of effective massm* in a plane
(x,y) confined by an external parabolic potential,V(r )5
1
2m*v0

2r 2, and subject to a strong magnetic fieldBW 5B0eW z .
The Hamiltonian for such a system is
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wherePW i5(\/ i )¹ i
W1(e/c)AW (r iW ) is the kinetic momentum of

the i th electron in the vector potentialAW (r iW )5
(B0/2)(2yi ,xi ,0). We include the spin degree of freedom of

the electrons,SiW ~which implies the addition of the Zeeman
energy withg*'0.54 as the effectiveg factor for the mate-
rial GaAs!, but neglect any spin-orbit interaction.~An order-
of-magnitude estimate for the magnetic-field strength in-
duced by the circular motion of an electron with an angular
momentum of\ at a distance ofl 0;1.031026 cm is only
e\/m* cl0

3'2.831025 T.! Defining the frequencies

vc5eB0 /m* c andv(B0)5Av0
21 1

4vc
2, we rewrite the co-

ordinates as dimensionless complex variables,zi5
(1/l 0)(xi2 iy i)/A2, wherel 05A\/m*v(B0) is the magnetic
length, to obtain
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Ĥ0 is the single-particle Hamiltonian whose eigenfunc-
tions will form the basis states for the Hartree-Fock calcula-
tion. For the spatial part ofĤ0 we define

a†5
1

A2
~ z̄2]z!, b†5

1

A2
~z2] z̄ !, a5

1

A2
~z1] z̄ !,

b5
1

A2
~ z̄1]z! ~3!

with @a,a†#5@b,b†#51 and write
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whereL:5b†b2a†a is the angular momentum of the par-
ticle. The eigenvalues of the single-particle Schro¨dinger
equation Ĥ0Cnk5enkCnk , enk5\v(B0)$2n1uku11%2
1
2\vck, indicate that for strong magnetic fields, e.g.,
B0'10 T, one has\vc'17 meV and\v(B0)'9 meV ~as-
suming \v053 meV!, and all particles occupy the Fock-
Darwin states withn50:

De5en50L2en50L21'0.5 meV!en50L2en51L

'18 meV.

We therefore restrict our calculation to then50 level, which
resembles the lowest Landau level if the external potential
had been switched off. The eigenfunctions are

Ck;zkexp(2uzu2) and are identical to the usual form
fk;e2 ikwr kL0

uku(r )exp(2r2/2l 0
2), L0

uku(r ) being the Laguerre
polynomial of degree zero.

In the Hartree-Fock calculation, we minimize the Hartree-
Fock energy
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with r l1l25^Fucl2
† cl1uF& being the density matrix anduF&

being a Slater determinant.cl
† creates a fermion in the state

C l , while its Hermitian conjugatecl destroys it. The indices
l i5(ki ,si) run over all orbital statesk, as well as the spin
degree of freedoms5$1 1

2,2
1
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ek1dk1k21(21)s111/2(g*mBB0/2)ds1s2 is the single-particle

matrix element of the Hamiltonian andv̄ the antisymme-
trized Coulomb matrix element,
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To minimize Eq. ~5!, we vary with respect tor,
dEHF/dr50, with the contraints that we stay within the set
of Slater determinants (r25r) and conserve the number of
particles (trr5m) resulting in the matrix diagonalization
problem
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whereG is the so-called mean field. The eigenvectorsDW k of
h represent the new single-particle states$k%, which are to be
occupied according to the energies«k . Equation~7! has to
be solved self-consistently, sincer l l 85( i51

m DliDl 8 i
* .

We use the Fock-Darwin representation in our calculation
and take into account up to 200 single-particle states~includ-
ing spin!. We tested our code by comparison with the results
of Pfannkuche, Gudmundsson, and Maksym6 and Bolton.7

Although Pfannkuche, Gudmundsson, and Maksym describe
quantum dot helium in a model space that is different from

FIG. 1. Ground-state energy of the Wigner molecule~solid line!
and lowest rotationally symmetric state~dashed line! for ten elec-
trons.
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ours ~they includednÞ0 states in their calculation!, our
ground-state energies of total angular momentumJ51 for
0<B0<5 T coincide with their Hartree-Fock calculation
within less then 2%, and theJ50 ground-state energies
agree with less than 5%. As one can see in Table I of Ref. 6,
the nÞ0 coefficients in theirJ50 ground state are larger
than in theirJ51 ground state, so that thenÞ0 space is
more significant for those magnetic-field strengths. Similar
results are obtained if we compare our results to the fixed
node Monte Carlo calculation of Ref. 7. In the spin-polarized
case our ground-state energies agree within a few percent,
while we overestimate the energy of the depolarized system
by up to 15%. This is due to the larger correlation energies
~ignored in a Hartree-Fock calculation! when two electrons
can occupy the same orbital. Since the questions addressed
in this paper concern the spin-polarized regime, this devia-
tion from the results of Ref. 7 is of little concern.

The Hartree-Fock approximation is known to conserve
symmetries present in the initial trial wave function. To gen-
erate deformed solutions, we started with a quite arbitrary,
but not rotationally invariant, initial Slater determinant,
which produces a deformed initial mean field. Self-consistent

iteration of the Hartree-Fock scheme guarantees amplifica-
tion of solutions with the symmetry of the Wigner molecule.
Of course, the same converged solution must be reached for
several different initial states to give confidence that it is the
true minimum.

III. NUMERICAL RESULTS

We have used the material constants of GaAs~i.e.,
m*50.067me and e512.9, as well as an external potential
strength of\v053 meV! for our calculation. To observe the
expected phase transition, we first consider a system of
m510 electrons. Figure 1 shows the ground state energy as
a function of the magnetic-field strengthB0 and for compari-
son the lowest energy of the rotationally symmetric system.
The Wigner molecule becomes the ground state for
B0*5.2 T, while at smaller strengths the rotationally sym-
metric state is favored. The system undergoes spin polariza-
tion from B050 T to 1.5 T, where the spin-polarized so-
called maximum density droplet3 prevails. AtB054.5 T bulk
instabilities result in unoccupied inner Fock-Darwin states.
The transition to a Wigner molecule, and later to a crystal,

FIG. 2. The electron density distribution for
m510 electrons. The upper panel shows the so-
lution atB056 T, the lower atB0510 T.
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happens very gradually.~We refer to the case where the
probability density is deformed, but still very smeared out as
a ‘‘molecule,’’ while a ‘‘crystal’’ signifies well localized and
distinguishable electrons, as illustrated in Fig. 2.! The mol-
ecule atB056 T is lower in energy by only 0.2% (0.542
meV! relative to the rotationally symmetric solution, while
the crystal atB0510 T gains about;3 meV, which is of
order of the strength of the confining potential. Note that the
deformed ground states are not eigenstates of the total angu-
lar momentum operatorJ5( iL( i ).

The rotationally symmetric case suffers further complica-
tion with increasing magnetic-field strength: While at first
(B0'6 T! the hole in the bulk widens~the l51,2,3 Fock-
Darwin levels empty! and later atB056.75 T a fourth state
empties, the solution transforms into two separate rings at
B0>9 T.

For further insight into the various transitions, the radial
~angle-averaged! particle distribution for various magnetic
fields is shown in Fig. 3 form520 electrons. The crystalline
state has one electron in the center of the dot, seven in a
middle ring, and 12 electrons in the outmost region. Corre-
spondingly, theB0520 T curve shows three maxima. For
B056 T the center electron and the seven in the middle ring
have almost uniformly merged to a flat distribution, which
extends toz'2, and the outer ring can now be found at
z'3. ForB05324 T we find again the so-called maximum
density droplet: the electrons occupy the first 20 Fock-
Darwin levels, since they are polarized. Further lowering of
B0 results in a depolarization, allowing further accumulation
of electrons near the origin. Since we only take into account
n50 states, we cannot claim to represent the physical situa-
tion for the smaller field strength, although we do reproduce
the energies in this regime quite well, as noted above.

In Fig. 4 we plot the separation energy
D(m)5Em112Em and the differences in the separation en-
ergy,D2(m)5D(m11)2D(m), as functions of the particle
numberm in the crystal regime,B0520 T. There is a large
drop inD2 of ;0.5 meV whenever charge can be put to the

outer region of the dot~see, e.g.,m54 andm58), in accord
with charge being distributed over a larger area, thereby re-
ducing the Coulomb energy. In the case where one charge is
placed in the center and two rings outside (m514), the gain
in energy is reduced by the fact that more particles outside
feel a stronger external potential. The tendency here is that
the Coulomb energy plays a less and less important role,
weakening the slope in the separation energy, combined with
the fact that one can pack more particle in the outer region.

For comparison, we also show in Fig. 4D(m) and
D2(m) for the lowest rotationally symmetric state. No clear
tendency in the behavior ofD2(m) is evident. The system is
frustrated by the particles having to occupy Fock-Darwin
levels.

In Table I we show the spatial configurations of the sys-
tem in the Wigner-like structure~obtained by enumerating
the number of electrons occupying the corresponding rings!
and give the ground-state energies. We generally confirm the
configurations of the classical calculation of Ref. 5 as well as
the exceptional behavior of them56, 10, 12, and 17 clus-
ters, although there is no peak inD2 for m514 ~the peaks in
Fig. 4 correspond to the cusps of Fig. 5 of Ref. 5!, since ten
electrons are moved outside for them516 configuration.

The Hartree Fock calculation is based on a theory of in-
dependent particles moving in an average potential. We im-
proved the wave functions for the Wigner regime to a many-
body wave function by introducing a Jastrow-type function:

uC&5S S)
i, j

f ~zi2zj ! DFHF, ~8!

whereS is the symmetrizer andFHF the Hartree-Fock solu-
tion to the problem. To guarantee a convenient symmetrized
form of the product of these function, we made the ansatz

f ~zi2zj !5uzi2zj uk ~9!

for the pair correlation functionf (zi2zj ) with k as a varia-
tional parameter. We performed a variational Monte Carlo
calculation8 to evaluate the energy

E@k#5
^CuHuC&

^CuC&
. ~10!

As it turned out, the Jastrow type wave function did not
significantly improve the Hartree-Fock energy. In the case of
ten electrons andB520 T, the energy could only be im-
proved by 0.1% (0.4 meV! at k50.1. For 0.1,k,1 the
energy is slowly increasing, while fork.1 highly excited
states are simulated as more holes are introduced into the
wave function. Obviously, the Hartree-Fock solution already
describes the Wigner state accurately.

In Fig. 5 we plot the phase diagram with respect to num-
ber of particles and the ratiovc /v0. We omit the regime of
bulk instabilities, since it is of minor importance. The phase
boundary of the spin-polarized regime and the partially un-
polarized regime suffers again from the Hartree-Fock ap-

FIG. 3. Radial electron density ofm520 electrons for different
values ofB0. The solid curves represent Wigner crystals, while the
dashed curves show the slow transition to a maximum density drop-
let, which is drawn with a dashed-dotted line. Depolarization sets in
for the cases of the dotted curves.
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proximation, as it bends down with decreasing number of
electrons. The boundary of the molecular regime is defined
by how much the continuous rotational symmetry is broken:
the fractional uncertainty in the total angular momentum is

f5DJ/^Ĵ&5A^Ĵ2&2^Ĵ&2/^Ĵ&, and we define a molecule by
f.1%. The boundary is fairly constant form.6, but, since
the transition is gradual, it has some uncertainty. For less
than eight particles, we find a small drop in the boundary,
due either to some nonobvious physical effect or to the ap-
proximation we use.

In our Hartree-Fock solutions of ten or more electrons and
B0520 T, the relative uncertainty in total angular momen-
tum, f , is of order of 10%. As in atomic nuclei, these de-
formed solutions give rise to rotational spectra, which do not
appear in the case of the unbroken symmetry. We have esti-
mated the spectrum of rotational excitations by projecting
the Hartree-Fock Slater determinant onto eigenfunctions of
good angular momentumI .9 The projector has the form

P̂I5
1

2pE0
2p

eia~ Ĵ2I !da ~11!

and the energies that result from taking the mean value of
Ĥ with the projected wave functions are given by

TABLE I. Ground-state energies and spatial distributions of
Wigner crystal in quantum dots for up to 20 electrons atB520 T.

Number of Energy Ring occupations
electrons ~meV! inner-middle-outer

1 17.247 1-0-0
2 40.085 2-0-0
3 66.439 3-0-0
4 96.463 4-0-0
5 129.986 5-0-0
6 166.346 1-5-0
7 205.448 1-6-0
8 247.636 1-7-0
9 292.621 2-7-0
10 339.934 2-8-0
11 389.489 3-8-0
12 441.634 3-9-0
13 496.008 4-9-0
14 552.825 4-10-0
15 611.879 5-10-0
16 673.004 1-5-10
17 736.135 1-5-11
18 801.162 1-6-11
19 868.558 1-6-12
20 937.973 1-7-12

FIG. 4. Separation energyD(m) and the differences in the separation energyD2(m) for Wigner molecules~upper two diagrams! and for
the lowest available rotationally symmetric states~lower two diagrams!.
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defining the quantitiesh(a)5^FuĤeia ĴuF& and n(a)5

^Fueia ĴuF&. Since the standard deviation inĴ is only of few
percent, one can calculate these matrix elements approxi-
mately by writingh(a) in the expansion

h~a!5 (
n50
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i

]

]a D nn~a!. ~13!

One justifies this ansatz with the fact that it represents a
Taylor expansion of the Fourier transformed function
h(a)/n(a), and, assuming that both quantities are sharply
peaked ata50, this quotient is smooth and can be approxi-
mated by a few terms of Eq.~13!. By operating
@^2 Ĵ&1(1/i )]/]a# on Eq. ~13! and settinga50, one gets
an inhomogeneous system of equations for the unknown
h0 , . . . ,hK :
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Equation~12! can then be expressed as
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We restrict ourselves toK52, since higher terms involve the
calculation ofk-body operators withk.4. For this case, we
have

h25
^D Ĵ2&^ĤD Ĵ2&2^D Ĵ3&^ĤD Ĵ&2^D Ĵ2&2^Ĥ&
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^ĤD Ĵ&
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2h2

^D Ĵ3&
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h05^Ĥ&2h2^D Ĵ
2&.

Figure 6 shows the rotational spectra form510 and
m520 electrons andB520 T as a function of the quantum
number I , where we have substracted the shifted ground-
state energy, which is obtained from the Hartree-Fock energy
^Ĥ& by substracting the spurious rotational energy
h2^D Ĵ

2&, which is only of order 0.25 meV in both cases. The
moments of inertia associated with these
states are JY51/2h255.23105\2 / eV for m510 and
JY51.93106\2 / eV for m520.

In order to excite a molecule with circular polarized ra-
diation, one has to produce photons of minimal energy
of DE(10)(I5224)5Eproj

I (I5224)2(^Ĥ&2h2^D Ĵ
2&)

51.1231027 eV for the ten electron molecule and
DE(20)(I5790)53.231028 eV for 20 electrons, which are
the energy differences between ground and first excited state.
These energies correspond to radio frequencies of
n (10)527.06 MHz andn (20)57.73 MHz. Note that the cor-
responding wavelengths are in the transparent region for
GaAs. Therefore the measurement of transmission coeffi-
cients of circular polarized radiation should give experimen-
tal evidence of Wigner molecules. The level spacing,
DE'(]Eproj

I /]I )DI , of the excited states then increases with
higher states, resulting in excitations in the microwave re-
gion. The heat capacity connected with this rotational degree
of freedom,

c5
]^U&
]T

5
]

]T

1

Z F(
I
Eproj
I expS 2

Eproj
I

kBT
D G , ~17!

where Z511( Iexp(2Eproj
I /kBT) is the partition function

andkB Boltzmann’s constant, should therefore reach its clas-
sical value of12kB even for temperature as low as 1 K. Figure
7 shows the well-known Schottky anomaly of the heat ca-
pacity, typical for a system where only two states are of
importance, at low temperatures of;1 mK. As expected, it
approaches12kB for high temperatures. For the indicated tem-
perature regime the heat capacity has converged within our
model space, which consists of 400 rotational states and
shows the expected typical behavior of a quantum mechani-
cal rotor in a heat bath.

The energy levels of the vibrational modes of a single
electron in the crystal can be estimated in a simplified one-
dimensional model. Concerned only with the radial degree of
freedom, an outer electron~in the case of ten electrons! in-
teracts with the external potential and the Coulomb potential
of the two inner electrons, which we regard positioned at the
center:

V~r !5
1

2
m*v0

2r 21
2e2

er
. ~18!

FIG. 5. Phase diagram for quantum dots, plottingvc /v0 vs the
number of electrons (m). The lines crudely trace the boundaries to
guide the eye.
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Expanding the potential around the equilibrium positionr 0
of the outer electron to second order, we obtain

V~r !5
1

2
m* H v0

21
8e2

em* r 0
3 J ~r2r 0!

21Hm*v0
2r 02

2e2

er 0
2 J

3~r2r 0!1
1

2
m*v0

2r 0
21

2e2

er 0
. ~19!

The electron is confined by the parabolic part of this expan-
sion with an corrected strengthv85Av0

218e2/em* r 0
3. Set-

ting r 0'231026 cm, the energy levels for the vibrational
modes of the electron are separated by

DEvib5\v(B0)5A(\v8)21 1
4 (\vc)

2'21 meV, much
larger than the separation in the rotational energy levels
(DErot'1024 meV around I5225\). Vibrational modes
therefore contribute only marginally to the heat capacity and
can be easily suppressed by proper excitation of the rota-
tional modes only.

In summary, we have shown in a full quantum mechanical
treatment that there exist regimes where Wigner molecules
and crystals are the ground states of quantum dots. We have
also described rotational spectra of quantum dots, which
arise from the existence of deformed Hartree-Fock solutions.
This broken symmetry could make it possible to detect
Wigner molecules experimentally by exciting the rotational
excited states of the system. Open questions remain: How do
the two-body correlations neglected in the Hartree-Fock ap-
proximation influence systems of few electrons (m,5) and
what kind of state is formed in the case of many particles
(m.40)?
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FIG. 6. Rotational spectra for ten electrons~upper diagram! and 20 electrons~lower diagram!, when they have formed Wigner molecules
at B0520 T, as a function of total angular momentumI .

FIG. 7. Heat capacityc arising from the rotational spectra of
Fig. 6. The dashed line shows the 20 electron system, the solid one
the ten electron case.
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