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Phase transitions in quantum dots

H.-M. Muller and S. E.Koonin
W. K. Kellogg Radiation Laboratory, 106-38, California Institute of Technology, Pasadena, California 91125
(Received 16 July 1996

We perform Hartree-Fock calculations to show that quantum @dets two-dimensional systems of up to
twenty interacting electrons in an external parabolic potentiadiergo a gradual transition to a spin-polarized
Wigner crystal with increasing magnetic-field strength. The phase diagram and ground-state energies have
been determined. We tried to improve the ground state of the Wigner crystal by introducing a Jastrow ansatz
for the wave function and performing a variational Monte Carlo calculation. The existence of so-called magic
numbers was also investigated. Finally, we also calculated the heat capacity associated with the rotational
degree of freedom of deformed many-body stat86163-18206)04544-4

[. INTRODUCTION Carlo calculation that we performed to improve the wave
function by a Jastrow ansatz. Finally, we investigate the ro-
Quantum dots have been the subject of recent intense exational spectra associated with the breaking of the continu-
perimental and theoretical research. The interest in thessus rotational symmetry; the heat capacity associated with
nanostructures arises not only from possible new technologihis new rotational degree of freedom is calculated.
cal applications, but also from the desire to understand the
fundamental physical problem of a femn& 300) interacting
electrons in an external potential and a strong magnetic field.
In a weak magnetic field electrons form a rotationally Il. THEORY
symmetric state by occupying the lowest Fock-Darwin lev-
els. With increasing magnetic field, the behavior is deter- We considem electrons of effective mass* in a plane
mined by three basic meChani?mS: the Spin a'lignment of the(,y) confined by an external parabo”c potentim(r):
electronsf(ev.ent.ually rgsultmg in a spin-polarized sysfem Im* w2r2, and subject to a strong magnetic field= B,
the Pauli pr|n<3|p|e(wh|ch causes t_he ground states of the-l-he Hamiltonian for such a system is
system to occur with certain “magic humbers” of the total
angular momentuf), and finally the Coulomb interaction.
This latter makes the electron droplet susceptible to edge

excitations and bulk instabilities, as the electron-electronin- ~ m moq " g% ueB- S
teraction favors a larger aré4. H=>, T2+ > —m* w3 (X2+y?)+ > J KBE
The scenario above assumes an unbroken rotational sym- =1 2m =12 i=1 h
metry. Questions concerning a high-field transition to so-
called Wigner molecules and crystals, in which electrons oc- e?
cupy fixed sites in a rotating frame and are therefore +i2<j ﬁ (1)
[ J

localized, have been investigated by Makgyamd Bolton
and Rssler” Maksym considers a “large angular momen-
tum limit” of systems of up to five electrons and describes - . 5 .
only excited states of integer angular momentum. He spectVnerelli=(#/1)Vi+(e/c)A(r;) is the kinetic momentum of
lates on the existence of ground-state Wigner molecules ithe ith electron in the vector potentialA(r;)=
the large-field limit. Bolton and Rssler simulated up to 40 (Bo/2)(—V;,X;,0). We include the spin degree of freedom of
classicalinteracting point charges in an external parabolicthe electronsS; (which implies the addition of the Zeeman
potential. energy withg* ~0.54 as the effectivg factor for the mate-

In this paper we consider the ground-state properties of upg, GaAs, but neglect any spin-orbit interactiofAn order-

to 20 electrons in the limit of a strong magnetic field. Weof-magnitude estimate for the magnetic-field strength in-
treat the full quantal problem by solving the Hartree-Fockﬁ1

i for the two-di ional elect Aft bri uced by the circular motion of an electron with an angular
equations Tor In€ two-aimensiona’ electron gas. ANET a b€y, o mentym off: at a distance ofg~1.0x107° cm is only

description of the well-known phases of the rotationallyeh/m*CI3,~28>< 105 T) Defining the frequencies
0 . .

symmetric case as they appear in the Hartree-Fock approxi- 1 _
mation, we present the gradual transition towards a Wignewc=€By/m*c and o(Bg) = V w5+ 3 0g, we rewrite the co-

molecule and crystal; the various spatial configurations ar@rdinates as dimensionless complex variablez=
shown and the shell structure is compared to that of the clagd/)(X; — iyi)/\2, wherel = Vi/m* w(B,) is the magnetic
sical calculatior?. We further describe a variational Monte length, to obtain
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I:|0 is the single-particle Hamiltonian whose eigenfunc-
tions will form the basis states for the Hartree-Fock calcula-

tion. For the spatial part d%lo we define

€
+ —
iE<j 6\/§|0|Zi_zj|

:Zl |:|O(Zi S+
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FIG. 1. Ground-state energy of the Wigner moledgielid line)
and lowest rotationally symmetric stadashed ling for ten elec-

+ 1 _ + 1 1 trons.
a=—2(z—<9z), b'=— =—

N \/E(z—azﬁ, a \/E(z+azﬁ,

\Ifk~zkexp(—|z\2) and are identical to the usual form

1 d~e *erk L (rexp-r¥212), LK(r) being the Laguerre
b=—(z+4,) (3)  polynomial of degree zero.
V2 In the Hartree-Fock calculation, we minimize the Hartree-

with [a,a’]=[b,b"]=1 and write Fock energy

Ho(2) =% w(Bo)(ata+b'b+1)— tw.(b'b—ata) EFF=(®[H|D)= > 1 (®]c] c\|P)
i

=fhw(By)(2ata+L+1)—thwL, (4) L
where £:=b'b—a'a is the angular momentum of the par- + 2 EI v_|1|2|3|4<q’|C|TlC|TZC|40|3|‘I’>
ticle. The eigenvalues of the single-particle Sdhinger 12134
equation HoW =¥k, en=ho(Bg){2n+|k|+1}— _ 1 —
thwk, indicate that for strong magnetic fields, e.g., % RICL P 2'1?'3'4 ECLPEE LN ®

Bo~10 T, one ha® w,~17 meV andi w(By)~9 meV (as-
suming fwy=3 meV), and all particles occupy the Fock-
Darwin states witm=_0:

with p,1|2=<<b|cﬂ°zc|l|<l>> being the density matrix anfb)
being a Slater determinart; creates a fermion in the state
WV, , while its Hermitian conjugate, destroys it. The indices
li=(k;,s;) run over all orbital state&, as well as the spin
degree of freedoms={+3—3}. t;,=(¥ [Ho|V )=
We therefore restrict our calculation to the-0 level, which €, Siqk, = (— 1) (g* 15Bo/2) s s, is the single-particle

resembles the lowest Landau level if the external potentiainatrix element of the Hamiltonian angd the antisymme-
had been switched off. The eigenfunctions aretrized Coulomb matrix element,

A€e=é€n—oL— €n=0L-1~0.5 MeVe,_o —€n-1

~18 meV.

1 1 .
o 62 . <ab|m|cd>—<ab|m|dc> if Sc= Sy (6)
v ———

abcd 6\/§|0 1

ab|———|cd) if s #sy.
< ||zi_zj|| > C d

Eg minimize Eq. (5), we vary with respect top,  wherer is the so-called mean field. The eigenvectdysof
0E™"/5p=0, with the contraints that we stay within the set h represent the new single-particle staftiels which are to be
of St_lalter d:etermlnantSpIS:p). a’t‘g conste_rved'Fhe ”UTb‘if of occupied according to the energies. Equation(7) has to

articles (tp=m) resulting in the matrix diagonalization - L L
P (tp=m) 9 9 be solved self-consistently, sinpg. ==" ,D,,D};; .

problem We use the Fock-Darwin representation in our calculation
and take into account up to 200 single-particle stétegud-

ing spin. We tested our code by comparison with the results
of Pfannkuche, Gudmundsson, and MakSyamd Bolton’
Although Pfannkuche, Gudmundsson, and Maksym describe
quantum dot helium in a model space that is different from

; hiijk:; (tij+ 1) Djk

=2

J

tij +> U_il’jlpll’) Dix=eDik, (7)
i’
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(a) X FIG. 2. The electron density distribution for
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ours (they includedn#0 states in their calculationour iteration of the Hartree-Fock scheme guarantees amplifica-

ground-state energies of total angular momentlsnl for  tion of solutions with the symmetry of the Wigner molecule.

0<By<5 T coincide with their Hartree-Fock calculation Of course, the same converged solution must be reached for

within less then 2%, and thd=0 ground-state energies several different initial states to give confidence that it is the

agree with less than 5%. As one can see in Table | of Ref. drue minimum.

the n#0 coefficients in theirdJ=0 ground state are larger

than in.tht_ai.rle ground state, so that the# 0 space_is_ IIl. NUMERICAL RESULTS

more significant for those magnetic-field strengths. Similar

results are obtained if we compare our results to the fixed We have used the material constants of Gails.,

node Monte Carlo calculation of Ref. 7. In the spin-polarizedm* =0.067m, and e=12.9, as well as an external potential

case our ground-state energies agree within a few percergirength ofi wy=3 me\) for our calculation. To observe the

while we overestimate the energy of the depolarized systeraxpected phase transition, we first consider a system of

by up to 15%. This is due to the larger correlation energiesn= 10 electrons. Figure 1 shows the ground state energy as

(ignored in a Hartree-Fock calculatiowhen two electrons a function of the magnetic-field strendgy and for compari-

can occupy the same orbital. Since the questions addressedn the lowest energy of the rotationally symmetric system.

in this paper concern the spin-polarized regime, this deviaThe Wigner molecule becomes the ground state for

tion from the results of Ref. 7 is of little concern. Bo=5.2 T, while at smaller strengths the rotationally sym-
The Hartree-Fock approximation is known to conservemetric state is favored. The system undergoes spin polariza-

symmetries present in the initial trial wave function. To gen-tion from B,=0 T to 1.5 T, where the spin-polarized so-

erate deformed solutions, we started with a quite arbitrarycalled maximum density dropfaprevails. AtB,=4.5 T bulk

but not rotationally invariant, initial Slater determinant, instabilities result in unoccupied inner Fock-Darwin states.

which produces a deformed initial mean field. Self-consistenThe transition to a Wigner molecule, and later to a crystal,
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8 T ] outer region of the daofsee, e.g..n=4 andm=8), in accord

. R 1 with charge being distributed over a larger area, thereby re-
i . 1 ducing the Coulomb energy. In the case where one charge is
6k 1 placed in the center and two rings outsishe={ 14), the gain

b : ] in energy is reduced by the fact that more particles outside
feel a stronger external potential. The tendency here is that
the Coulomb energy plays a less and less important role,
weakening the slope in the separation energy, combined with
the fact that one can pack more particle in the outer region.

For comparison, we also show in Fig. 4(m) and
A,(m) for the lowest rotationally symmetric state. No clear
tendency in the behavior &,(m) is evident. The system is
frustrated by the particles having to occupy Fock-Darwin
levels.

In Table | we show the spatial configurations of the sys-
tem in the Wigner-like structuréobtained by enumerating

FIG. 3. Radial electron density ofi=20 electrons for different  the number of electrons occupying the corresponding yings
values ofB,. The solid curves repre.s.ent Wigner f:rystals, while thegnd give the ground-state energies. We generally confirm the
dashed curves show the slow transition to a maximum density dropsgnfigurations of the classical calculation of Ref. 5 as well as
let, which is drawn with a dashed-dotted line. Depolarization sets Nhe exceptional behavior of the=6, 10, 12, and 17 clus-
for the cases of the dotted curves. ters, although there is no peakas for m= 14 (the peaks in

Fig. 4 correspond to the cusps of Fig. 5 of Ref. &ince ten
happens very graduallyWe refer to the case where the electrons are moved outside for the= 16 configuration.
probability density is deformed, but still very smeared out as The Hartree Fock calculation is based on a theory of in-
a “molecule,” while a “crystal” signifies well localized and dependent particles moving in an average potential. We im-
distinguishable electrons, as illustrated in Fig. Phe mol-  proved the wave functions for the Wigner regime to a many-
ecule atBy=6 T is lower in energy by only 0.2% (0.542 body wave function by introducing a Jastrow-type function:
meV) relative to the rotationally symmetric solution, while
the crystal atBo=10 T gains about-3 meV, which is of
order of the strength of the confining potential. Note that the _ o
deformed ground states are not eigenstates of the total angu- )= ( Siﬂj f(z Z‘)) Phr, ®
lar momentum operatal==3;£0.

The rotationally symmetric case suffers further complica-whereS is the symmetrizer and - the Hartree-Fock solu-
tion with increasing magnetic-field strength: While at first tion to the problem. To guarantee a convenient symmetrized
(Bo=~6 T) the hole in the bulk widengthe |=1,2,3 Fock- form of the product of these function, we made the ansatz
Darwin levels emptyand later aB,=6.75 T a fourth state
empties, the solution transforms into two separate rings at
Bo=9 T. f(zi—z)=|z-z]* 9

For further insight into the various transitions, the radial
(angle-averagedparticle distribution for various magnetic for the pair correlation functio(z; —z;) with k as a varia-
fields is shown in Fig. 3 fom=20 electrons. The crystalline tional parameter. We performed a variational Monte Carlo
state has one electron in the center of the dot, seven in @alculatior to evaluate the energy
middle ring, and 12 electrons in the outmost region. Corre-
spondingly, theB,=20 T curve shows three maxima. For
Bo,=6 T the center electron and the seven in the middle ring EMK]= (W[H|W)

. o . [K]= .
have almost uniformly merged to a flat distribution, which (¥|W¥)
extends toz=~2, and the outer ring can now be found at
z~3. ForBy,=3—-4 T we find again the so-called maximum As it turned out, the Jastrow type wave function did not
density droplet: the electrons occupy the first 20 Fock-significantly improve the Hartree-Fock energy. In the case of
Darwin levels, since they are polarized. Further lowering often electrons an@=20 T, the energy could only be im-

B, results in a depolarization, allowing further accumulationproved by 0.1% (0.4 meNat k=0.1. For 0.Kk<1 the

of electrons near the origin. Since we only take into accountnergy is slowly increasing, while fdc>1 highly excited
n=0 states, we cannot claim to represent the physical situsstates are simulated as more holes are introduced into the
tion for the smaller field strength, although we do reproducavave function. Obviously, the Hartree-Fock solution already
the energies in this regime quite well, as noted above. describes the Wigner state accurately.

In Fig. 4 we plot the separation energy In Fig.5 we plot the phase diagram with respect to num-
A(m)=E+1— En, and the differences in the separation en-ber of particles and the rati®./wy. We omit the regime of
ergy,A,(m)=A(m+1)—A(m), as functions of the particle bulk instabilities, since it is of minor importance. The phase
numberm in the crystal regimeB,=20 T. There is a large boundary of the spin-polarized regime and the partially un-
drop inA, of ~0.5 meV whenever charge can be put to thepolarized regime suffers again from the Hartree-Fock ap-

(10
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FIG. 4. Separation energy(m) and the differences in the separation enekgym) for Wigner moleculegupper two diagramsand for
the lowest available rotationally symmetric statsver two diagramps

proximation, as it bends down with decreasing number of TABLE |. Ground-state energies and spatial distributions of

electrons. The boundary of the molecular regime is definegi,\,igner crystal in quantum dots for up to 20 electron®at20 T.
by how much the continuous rotational symmetry is broken;

the fractional uncertainty in the total angular momentum isNumber of Energy Ring occupations
f=AJ/(3)=(JI?)—(3)4(J), and we define a molecule by electrons (meV) inner-middle-outer

f>1%. The boundary is fairly constant for>6, but, since

the transition is gradual, it has some uncertainty. For les$ L7.247 1-0-0
than eight particles, we find a small drop in the boundary,2 40.085 2:0-0
due either to some nonobvious physical effect or to the ap3 66.439 3-0-0
proximation we use. 4 96.463 4-0-0
In our Hartree-Fock solutions of ten or more electrons and® 129.986 5-0-0
Bo=20 T, the relative uncertainty in total angular momen-6 166.346 1-5-0
tum, f, is of order of 10%. As in atomic nuclei, these de- 7 205.448 1-6-0
formed solutions give rise to rotational spectra, which do no8 247.636 1-7-0
appear in the case of the unbroken symmetry. We have est# 292.621 2-7-0
mated the spectrum of rotational excitations by projectinglO 339.934 2-8-0
the Hartree-Fock Slater determinant onto eigenfunctions ofl 389.489 3-8-0
good angular momentutn® The projector has the form 12 441.634 3-9-0
13 496.008 4-9-0

14 552.825 4-10-0

15 611.879 5-10-0

Bi_t [P giat-1g, 1y 16 673.004 1-5-10

2m o 17 736.135 1-5-11

18 801.162 1-6-11

, _ 19 868.558 1-6-12

and the energies that result from taking the mean value of 937.973 1-7-12

H with the projected wave functions are given by
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35 T _(AF)(HAT) — (AF)(HAJ) -~ (AT?)*(H)
3.0 7 « molecule //Z\X\X_LYJ_X_L ; 2 <A32><A34>_<A33>2_<A32>3 !
E \\\ v ] A A ~
e E (HAY)  (A%%)
o I ] 1= o N =, (16)
320 F 7 (AJ?) (AJ?)
~ r spin polarized regime b
1o ho=(F)—ha(AT2).
1.0
s partially unpolarized Figure 6 shows the rotational spectra for=10 and
05 region ] m= 20 electrons an®=20 T as a function of the quantum
T numberl, where we have substracted the shifted ground-
0.0 0 5 10 15 50 state energy, which is obtained from the Hartree-Fock energy

number of electrons (m) (H) by substracting the spurious rotational energy
h,(AJ?), which is only of order 0.25 meV in both cases. The
FIG. 5. Phase diagram for quantum dots, plotting wo vs the  moments of inertia associated with these
number of electronsng). The lines crudely trace the boundaries t0 giates  gre Jy=1/2h,=5.2x10P42/ eV for m=10 and
guide the eye. Jy=1.9x10°%%/ eV for m=20.
In order to excite a molecule with circular polarized ra-
diation, one has to produce photons of minimal energy
. f of AECO(1=224)=E,,(1=224)— ((H)—h,(AJ?))
,_(®HP'[®) =1.12x10"7 eV for the ten electron molecule and
PO [Pl D) 0 (12) AE®RO(]1=790)=3.2x 1078 eV for 20 electrons, which are
f dan(a)e the energy differences between ground and first excited state.
These energies correspond to radio frequencies of
- y T ~ v119=27.06 MHz andv(®*¥=7.73 MHz. Note that the cor-
defining the quantitiesh(a)=(®|He'*’|®) and n(«)=  egponding wavelengths are in the transparent region for
(®|e'“’|®). Since the standard deviationJdnis only of few  GaAs. Therefore the measurement of transmission coeffi-
percent, one can calculate these matrix elements approxgients of circular polarized radiation should give experimen-

dah(a)e '

mately by writingh(a) in the expansion tal evidence of Wigner molecules. The level spacing,
AE%(&E'WOJ-/&I)AI, of the excited states then increases with
higher states, resulting in excitations in the microwave re-
K ~ 1 9\ gion. The heat capacity connected with this rotational degree
h(a)=2 hn( —(H+ 7| n(a). (13)  of freedom,
n=0 | da
AUy 91

N : . : El o
One justifies this ansatz with the fact that it represents a 2 E' exg — P9
. . . proj k T
Taylor expansion of the Fourier transformed function [ B
h(a)/n(«), and, assuming that both quantities are sharply _ | ) . .
peaked atv=0, this quotient is smooth and can be approxi-Where Z=1+Z,exp(-Eyo/kgT) is the partition function
mated by a few terms of Eq(13. By operating &ndkg Boltzmann's constant, should therefore reach its clas-

7 ; sical value ofkg even for temperature as low as 1 K. Figure
[(—J3)+(1fi)d/da] on Eq.(13) and settinge=0, one gets 2"B
an inhomogeneous system of equations for the unknow sr_]ows the well-known Schottky anomaly of the heat ca-
ho, . .. hy: pacity, typical for a system where only two states are of

importance, at low temperatures 6fL mK. As expected, it
approachesgkg for high temperatures. For the indicated tem-
perature regime the heat capacity has converged within our
model space, which consists of 400 rotational states and
shows the expected typical behavior of a quantum mechani-
cal rotor in a heat bath.

The energy levels of the vibrational modes of a single
electron in the crystal can be estimated in a simplified one-
dimensional model. Concerned only with the radial degree of
freedom, an outer electrofin the case of ten electronm-

. @

=T Tz

K
<H<A3>"‘>=n§O ha((AJ)™ ). (14)

Equation(12) can then be expressed as

K
El = 2 ho(1 _<3>)n (15) teracts with the external potential and the Coulomb potential
proj = " ' of the two inner electrons, which we regard positioned at the
center:

We restrict ourselves t =2, since higher terms involve the 1 0e?
. _ . . e
Eglvcglanon ofk-body operators wittk>4. For this case, we V(r)= Em* w§r2+ —. (19)
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FIG. 6. Rotational spectra for ten electrdupper diagramand 20 electronflower diagram, when they have formed Wigner molecules
atBy=20 T, as a function of total angular momentum

Expanding the potential around the equilibrium positign

of the outer electron to second order, we obtain

V(r)=£m* w2+—ge2 (r—ro)?+{ m* wlr _72e2
2 0" em*rg 0 00 erd
1 *x 2.2 282 (19)
X(r=ro)+ sm*wirg+ —.
( O) 2 00 Ero
6 T T T
ol
— 5 M ]
m -l‘ i
=
i e
o 4 r
S 0 e ]
=2 — b
g3l - ]
S
10 electrons ]
o 2 i \ y eiectirons 1
= b~
g i
< 1 ]
0 T RS R A e
0.0 2.5 5.0 7.5 10.0

tempera ture T [mK]

The electron is confined by the parabolic part of this expan-
sion with an corrected strength’ = \/w2+8e%/ em*r3. Set-

ting ro=2x10"® cm, the energy levels for the vibrational
modes of the electron are separated by
AEp=fio(Bo)=\(fhw')2+(hw)2~21 meV, much
larger than the separation in the rotational energy levels
(AE,r=10"% meV around|=225:). Vibrational modes
therefore contribute only marginally to the heat capacity and
can be easily suppressed by proper excitation of the rota-
tional modes only.

In summary, we have shown in a full guantum mechanical
treatment that there exist regimes where Wigner molecules
and crystals are the ground states of quantum dots. We have
also described rotational spectra of quantum dots, which
arise from the existence of deformed Hartree-Fock solutions.
This broken symmetry could make it possible to detect
Wigner molecules experimentally by exciting the rotational
excited states of the system. Open questions remain: How do
the two-body correlations neglected in the Hartree-Fock ap-
proximation influence systems of few electroms<(5) and
what kind of state is formed in the case of many particles
(m>40)?
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