700 research outputs found

    Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages

    Get PDF
    This study provides the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments

    Detection of Perturbation Phases and Developmental Stages in Organisms from DNA Microarray Time Series Data

    Get PDF
    Available DNA microarray time series that record gene expression along the developmental stages of multicellular eukaryotes, or in unicellular organisms subject to external perturbations such as stress and diauxie, are analyzed. By pairwise comparison of the gene expression profiles on the basis of a translation-invariant and scale-invariant distance measure corresponding to least-rectangle regression, it is shown that peaks in the average distance values are noticeable and are localized around specific time points. These points systematically coincide with the transition points between developmental phases or just follow the external perturbations. This approach can thus be used to identify automatically, from microarray time series alone, the presence of external perturbations or the succession of developmental stages in arbitrary cell systems. Moreover, our results show that there is a striking similarity between the gene expression responses to these a priori very different phenomena. In contrast, the cell cycle does not involve a perturbation-like phase, but rather continuous gene expression remodeling. Similar analyses were conducted using three other standard distance measures, showing that the one we introduced was superior. Based on these findings, we set up an adapted clustering method that uses this distance measure and classifies the genes on the basis of their expression profiles within each developmental stage or between perturbation phases

    The Escherichia coli transcriptome mostly consists of independently regulated modules

    Get PDF
    Underlying cellular responses is a transcriptional regulatory network (TRN) that modulates gene expression. A useful description of the TRN would decompose the transcriptome into targeted effects of individual transcriptional regulators. Here, we apply unsupervised machine learning to a diverse compendium of over 250 high-quality Escherichia coli RNA-seq datasets to identify 92 statistically independent signals that modulate the expression of specific gene sets. We show that 61 of these transcriptomic signals represent the effects of currently characterized transcriptional regulators. Condition-specific activation of signals is validated by exposure of E. coli to new environmental conditions. The resulting decomposition of the transcriptome provides: a mechanistic, systems-level, network-based explanation of responses to environmental and genetic perturbations; a guide to gene and regulator function discovery; and a basis for characterizing transcriptomic differences in multiple strains. Taken together, our results show that signal summation describes the composition of a model prokaryotic transcriptome

    Robust computational reconstitution – a new method for the comparative analysis of gene expression in tissues and isolated cell fractions

    Get PDF
    BACKGROUND: Biological tissues consist of various cell types that differentially contribute to physiological and pathophysiological processes. Determining and analyzing cell type-specific gene expression under diverse conditions is therefore a central aim of biomedical research. The present study compares gene expression profiles in whole tissues and isolated cell fractions purified from these tissues in patients with rheumatoid arthritis and osteoarthritis. RESULTS: The expression profiles of the whole tissues were compared to computationally reconstituted expression profiles that combine the expression profiles of the isolated cell fractions (macrophages, fibroblasts, and non-adherent cells) according to their relative mRNA proportions in the tissue. The mRNA proportions were determined by trimmed robust regression using only the most robustly-expressed genes (1/3 to 1/2 of all measured genes), i.e. those showing the most similar expression in tissue and isolated cell fractions. The relative mRNA proportions were determined using several different chip evaluation methods, among which the MAS 5.0 signal algorithm appeared to be most robust. The computed mRNA proportions agreed well with the cell proportions determined by immunohistochemistry except for a minor number of outliers. Genes that were either regulated (i.e. differentially-expressed in tissue and isolated cell fractions) or robustly-expressed in all patients were identified using different test statistics. CONCLUSION: Robust Computational Reconstitution uses an intermediate number of robustly-expressed genes to estimate the relative mRNA proportions. This avoids both the exclusive dependence on the robust expression of individual, highly cell type-specific marker genes and the bias towards an equal distribution upon inclusion of all genes for computation

    MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors

    Get PDF
    BACKGROUND MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated. METHODS Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets. RESULTS Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a "seedless" binding site within its 3'UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change. CONCLUSIONS Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers

    Predictive Power of Molecular Dynamics Receptor Structures in Virtual Screening

    Get PDF
    Molecular dynamics (MD) simulation is a well-established method for understanding protein dynamics. Conformations from unrestrained MD simulations have yet to be assessed for blind virtual screening (VS) by docking. This study presents a critical analysis of the predictive power of MD snapshots to this regard, evaluating two well-characterized systems of varying flexibility in ligand-bound and unbound configurations. Results from such VS predictions are discussed with respect to experimentally determined structures. In all cases, MD simulations provide snapshots that improve VS predictive power over known crystal structures, possibly due to sampling more relevant receptor conformations. Additionally, MD can move conformations previously not amenable to docking into the predictive range

    Dream-enactment behaviours during the COVID-19 pandemic: an international COVID-19 sleep study

    Get PDF
    There has been increasing concern about the long-term impact of coronavirus disease 2019 (COVID-19) as evidenced by anecdotal case reports of acute-onset parkinsonism and the polysomnographic feature of increased rapid eye movement sleep electromyographic activity. This study aimed to determine the prevalence and correlates of dream-enactment behaviours, a hallmark of rapid eye movement sleep behaviour disorder, which is a prodrome of α-synucleinopathy. This online survey was conducted between May and August 2020 in 15 countries/regions targeting adult participants (aged ≥18 years) from the general population with a harmonised structured questionnaire on sleep patterns and disorders, COVID-19 diagnosis and symptoms. We assessed dream-enactment behaviours using the Rapid Eye Movement Sleep Behaviour Disorder Single-Question Screen with an additional question on their frequency. Among 26,539 respondents, 21,870 (82.2%) answered all items that were analysed in this study (mean [SD] age 41.6 [15.8] years; female sex 65.5%). The weighted prevalence of lifetime and weekly dream-enactment behaviours was 19.4% and 3.1% and were found to be 1.8- and 2.9-times higher in COVID-19-positive cases, respectively. Both lifetime and weekly dream-enactment behaviours were associated with young age, male sex, smoking, alcohol consumption, higher physical activity level, nightmares, COVID-19 diagnosis, olfactory impairment, obstructive sleep apnea symptoms, mood, and post-traumatic stress disorder features. Among COVID-19-positive cases, weekly dream-enactment behaviours were positively associated with the severity of COVID-19. Dream-enactment behaviours are common among the general population during the COVID-19 pandemic and further increase among patients with COVID-19. Further studies are needed to investigate the potential neurodegenerative effect of COVID-19

    Modeling Intrinsically Disordered Proteins with Bayesian Statistics

    Get PDF
    The characterization of intrinsically disordered proteins is challenging because accurate models of these systems require a description of both their thermally accessible conformers and the associated relative stabilities or weights. These structures and weights are typically chosen such that calculated ensemble averages agree with some set of prespecified experimental measurements; however, the large number of degrees of freedom in these systems typically leads to multiple conformational ensembles that are degenerate with respect to any given set of experimental observables. In this work we demonstrate that estimates of the relative stabilities of conformers within an ensemble are often incorrect when one does not account for the underlying uncertainty in the estimates themselves. Therefore, we present a method for modeling the conformational properties of disordered proteins that estimates the uncertainty in the weights of each conformer. The Bayesian weighting (BW) formalism incorporates information from both experimental data and theoretical predictions to calculate a probability density over all possible ways of weighting the conformers in the ensemble. This probability density is then used to estimate the values of the weights. A unique and powerful feature of the approach is that it provides a built-in error measure that allows one to assess the accuracy of the ensemble. We validate the approach using reference ensembles constructed from the five-residue peptide met-enkephalin and then apply the BW method to construct an ensemble of the K18 isoform of the tau protein. Using this ensemble, we indentify a specific pattern of long-range contacts in K18 that correlates with the known aggregation properties of the sequence.National Institutes of Health (U.S.) (NIH Grant 5R21NS063185-02
    corecore