79 research outputs found

    Public health impact of low-dose aspirin on colorectal cancer, cardiovascular disease and safety in the UK – Results from micro-simulation model

    Get PDF
    Background: Low-dose aspirin therapy reduces the risk of cardiovascular disease and may have a positive effect on the prevention of colorectal cancer. We evaluated the population-level expected effect of regular low-dose aspirin use on cardiovascular disease (CVD), colorectal cancer (CRC), gastrointestinal bleeding, symptomatic peptic ulcers, and intracranial hemorrhage, using a microsimulation study design. Methods: We used individual-level state transition modeling to assess the impact of aspirin in populations aged 50–59 or 60–69 years old indicated for low-dose aspirin usage for primary or secondary CVD prevention. Model parameters were based on data from governmental agencies from the UK or recent publications. Results: In the 50–59 years cohort, a decrease in incidence rates (IRs per 100 000 person years) of non-fatal CVD (-203 and -794) and fatal CVD (-97 and-381) was reported in the primary and secondary CVD prevention setting, respectively. The IR reduction of CRC (-96 and -93) was similar for primary and secondary CVD prevention. The IR increase of non-fatal (116 and 119) and fatal safety events (6 and 6) was similar for primary and secondary CVD prevention. Similar results were obtained for the 60–69 years cohort. Conclusions: The decrease in fatal CVD and CRC events was larger than the increase in fatal safety events and this difference was more pronounced when low-dose aspirin was used for secondary compared to primary CVD prevention. These results provide a comprehensive image of the expected effect of regular low-dose aspirin therapy in a UK population indicated to use aspirin for CVD prevention. © 202

    Vaccine effectiveness against laboratory-confirmed influenza in Europe – Results from the DRIVE network during season 2018/19

    Get PDF
    The DRIVE project aims to establish a sustainable network to estimate brand-specific influenza vaccine effectiveness (IVE) annually. DRIVE is a public–private partnership launched in response to EMA guidance that requires effectiveness evaluation from manufacturers for all individual influenza vaccine brands every season. IVE studies are conducted by public partners in DRIVE. Private partners (vaccine manufacturers from the European Federation of Pharmaceutical Industries and Association (EFPIA)) provide written feedback moderated by an independent scientific committee. Test-negative design (TND) case-control studies (4 in primary care and five in hospital) were conducted in six countries in Europe during the 2018/19 season. Site-specific confounder-adjusted vaccine effectiveness (VE) estimates for any vaccine exposure were calculated by age group (<18 years (y), 18-64y and 65 + y) and pooled by setting (primary care, hospital) through random effects meta-analysis. In addition, one population-based cohort study was conducted in Finland. TND studies included 3339 cases and 6012 controls; seven vaccine brands were reported. For ages 65 + y, pooled VE against any influenza strain was estimated at 27% (95%CI 6–44) in hospital setting. Sample size was insufficient for meaningful IVE estimates in other age groups, in the primary care setting, or by vaccine brand. The population-based cohort study included 274,077 vaccinated and 494,337 unvaccinated person-years, two vaccine brands were reported. Brand-specific IVE was estimated for Fluenz Tetra (36% [95%CI 24–45]) for ages 2-6y, Vaxigrip Tetra (54% [43–62]) for ages 6 months to 6y, and Vaxigrip Tetra (30% [25–35]) for ages 65 + y. The results presented are from the second influenza season covered by the DRIVE network. While sample size from the pooled TND studies was still too low for precise (brand-specific) IVE estimates, the network has approximately doubled in size compared to the pilot season. Taking measures to increase sample size is an important focus of DRIVE for the coming years

    Successful optic nerve regeneration in the senescent zebrafish despite age-related decline of cell intrinsic and extrinsic response processes

    Get PDF
    Dysfunction of the central nervous system (CNS) in neurodegenerative diseases or after brain lesions seriously affects life quality of a growing number of elderly, since the adult CNS lacks the capacity to replace or repair damaged neurons. Despite intensive research efforts, full functional recovery after CNS disease and/or injury remains challenging, especially in an aging environment. As such, there is a rising need for an aging model in which the impact of aging on successful regeneration can be studied. Here, we introduce the senescent zebrafish retinotectal system as a valuable model to elucidate the cellular and molecular processes underlying age-related decline in axonal regeneration capacities. We found both intrinsic and extrinsic response processes to be altered in aged fish. Indeed, expression levels of growth-associated genes are reduced in naive and crushed retinas, and the injury-associated increase in innate immune cell density appears delayed, suggesting retinal inflammaging in old fish. Strikingly, however, despite a clear deceleration in regeneration onset and early axon outgrowth leading to an overall slowing of optic nerve regeneration, reinnervation of the optic tectum and recovery of visual function occurs successfully in the aged zebrafish retinotectal system

    Final analysis of a trial of M72/AS01E vaccine to prevent tuberculosis

    Get PDF
    Background Results of an earlier analysis of a trial of the M72/AS01E candidate vaccine against Mycobacterium tuberculosis showed that in infected adults, the vaccine provided 54.0% protection against active pulmonary tuberculosis disease, without evident safety concerns. We now report the results of the 3-year final analysis of efficacy, safety, and immunogenicity. Methods From August 2014 through November 2015, we enrolled adults 18 to 50 years of age with M. tuberculosis infection (defined by positive results on interferon-γ release assay) without evidence of active tuberculosis disease at centers in Kenya, South Africa, and Zambia. Participants were randomly assigned in a 1:1 ratio to receive two doses of either M72/AS01E or placebo, administered 1 month apart. The primary objective was to evaluate the efficacy of M72/AS01E to prevent active pulmonary tuberculosis disease according to the first case definition (bacteriologically confirmed pulmonary tuberculosis not associated with human immunodeficiency virus infection). Participants were followed for 3 years after the second dose. Participants with clinical suspicion of tuberculosis provided sputum samples for polymerase-chain-reaction assay, mycobacterial culture, or both. Humoral and cell-mediated immune responses were evaluated until month 36 in a subgroup of 300 participants. Safety was assessed in all participants who received at least one dose of M72/AS01E or placebo. Results A total of 3575 participants underwent randomization, of whom 3573 received at least one dose of M72/AS01E or placebo, and 3330 received both planned doses. Among the 3289 participants in the according-to-protocol efficacy cohort, 13 of the 1626 participants in the M72/AS01E group, as compared with 26 of the 1663 participants in the placebo group, had cases of tuberculosis that met the first case definition (incidence, 0.3 vs. 0.6 cases per 100 person-years). The vaccine efficacy at month 36 was 49.7% (90% confidence interval [CI], 12.1 to 71.2; 95% CI, 2.1 to 74.2). Among participants in the M72/AS01E group, the concentrations of M72-specific antibodies and the frequencies of M72-specific CD4+ T cells increased after the first dose and were sustained throughout the follow-up period. Serious adverse events, potential immune-mediated diseases, and deaths occurred with similar frequencies in the two groups. Conclusions Among adults infected with M. tuberculosis, vaccination with M72/AS01E elicited an immune response and provided protection against progression to pulmonary tuberculosis disease for at least 3 years. (Funded by GlaxoSmithKline Biologicals and Aeras; ClinicalTrials.gov number, NCT01755598. opens in new tab.

    ADVANCE system testing: Can coverage of pertussis vaccination be estimated in European countries using electronic healthcare databases: An example

    Get PDF
    Introduction: The Accelerated Development of VAccine beNefit-risk Collaboration in Europe (ADVANCE) is a public-private collaboration aiming to develop and test a system for rapid benefit-risk (B/R) monitoring of vaccines, using existing healthcare databases in Europe. The objective of this paper was to assess the feasibility of using electronic healthcare databases to estimate dose-specific acellular pertussis (aP) and whole cell pertussis (wP) vaccine coverage. Methods: Seven electronic healthcare databases in four European countries (Denmark (n = 2), UK (n = 2), Spain (n = 2) and Italy (n = 1)) participated in this study. Children were included from birth and followed up to age six years. Vaccination exposure was obtained from the databases and classified by type (aP or wP), and dose 1, 2 or 3. Coverage was estimated using period prevalence. For the 2006 birth cohort, two estimation methods for pertussis vaccine coverage, period prevalence and cumulative incidence were compared for each database. Results: The majority of the 2,575,576 children included had been vaccinated at the country-specific recommended ages. Overall, the estimated dose 3 coverage was 88–97% in Denmark (birth cohorts from 2003 to 2014), 96–100% in the UK (2003–2014), 95–98% in Spain (2004–2014) and 94% in Italy (2006–2007). The estimated dose 3 coverage per birth cohort in Denmark and the UK differed by 1–6% compared with national estimates, with our estimates mostly higher. The estimated dose 3 coverage in Spain differed by 0–2% with no consistent over- or underestimation. In Italy, the estimates were 3% lower compared with the national estimates. Except for Italy, for which the two coverage estimation methods generated the same results, the estimated cumulative incidence coverages were consistently 1–10% lower than period prevalence estimates. Conclusion: Thi

    ADVANCE system testing: Can safety studies be conducted using electronic healthcare data? An example using pertussis vaccination

    Get PDF
    Introduction: The Accelerated Development of Vaccine benefit-risk Collaboration in Europe (ADVANCE) public-private collaboration, aimed to develop and test a system for rapid benefit-risk monitoring of vaccines using healthcare databases in Europe. The objective of this proof-of-concept (POC) study was to test the feasibility of the ADVANCE system to generate incidence rates (IRs) per 1000 person-years and incidence rate ratios (IRRs) for risks associated with whole cell- (wP) and acellular- (aP) pertussis vaccines, occurring in event-specific risk windows in children prior to their pre-school-entry booster. Methods: The study population comprised almost 5.1 million children aged 1 month to <6 years vaccinated with wP or aP vaccines during the study period from 1 January 1990 to 31 December 2015. Data from two Danish hospital (H) databases (AUH and SSI) and five primary care (PC) databases from, UK (THIN and RCGP RSC), Spain (SIDIAP and BIFAP) and Italy (Pedianet) were analysed. Database-specific IRRs between risk vs. non-risk periods were estimated in a self-controlled case series study and pooled using random-effects meta-analyses. Results: The overall IRs were: fever, 58.2 (95% CI: 58.1; 58.3), 96.9 (96.7; 97.1) for PC DBs and 8.56 (8.5; 8.6) for H DBs; convulsions, 7.6 (95% CI: 7.6; 7.7), 3.55 (3.5; 3.6) for PC and 12.87 (12.8; 13) for H; persistent crying, 3.9 (95% CI: 3.8; 3.9) for PC, injection-site reactions, 2.2 (95% CI 2.1; 2.2) for PC, hypotonic hypo-responsive episode (HHE), 0.4 (95% CI: 0.4; 0.4), 0.6 (0.6; 0.6) for PC and 0.2 (0.2; 0.3) for H; and somnolence: 0.3 (95% CI: 0.3; 0.3) for PC. The pooled IRRs for persistent crying, fever, and ISR, adjusted for age and healthy vaccinee period were higher after wP vs. aP vaccination, and lower for convulsions, for all doses. The IRR for HHE was slightly lower for wP than aP, while wP was associated with somnolence only for dose 1 and dose 3 compared with aP. Conclusions: The estimated IRs and IRRs were comparable with published data, therefore demonstrating that the ADVANCE system was able to combine several European healthcare databases to assess vaccine safety data for wP and aP vaccination

    Quantifying outcome misclassification in multi-database studies: The case study of pertussis in the ADVANCE project

    Get PDF
    Background: The Accelerated Development of VAccine beNefit-risk Collaboration in Europe (ADVANCE) is a public-private collaboration aiming to develop and test a system for rapid benefit-risk (B/R) monitoring of vaccines using European healthcare databases. Event misclassification can result in biased estimates. Using different algorithms for identifying cases of Bordetella pertussis (BorPer) infection as a test case, we aimed to describe a strategy to quantify event misclassification, when manual chart review is not feasible. Methods: Four participating databases retrieved data from primary care (PC) setting: BIFAP: (Spain), THIN and RCGP RSC (UK) and PEDIANET (Italy); SIDIAP (Spain) retrieved data from both PC and hospital settings. BorPer algorithms were defined by healthcare setting, data domain (diagnoses, drugs, or laboratory tests) and concept sets (specific or unspecified pertussis). Algorithm- and database-specific BorPer incidence rates (IRs) were estimated in children aged 0–14 years enrolled in 2012 and 2014 and followed up until the end of each calendar year and compared with IRs of confirmed pertussis from the ECDC surveillance system (TESSy). Novel formulas were used to approximate validity indices, based on a small set of assumptions. They were applied to approximately estimate positive predictive value (PPV) and sensitivity in SIDIAP. Results: The number of cases and the estimated BorPer IRs per 100,000 person-years in PC, using data representing 3,173,268 person-years, were 0 (IR = 0.0), 21 (IR = 4.3), 21 (IR = 5.1), 79 (IR = 5.7), and 2 (IR = 2.3) in BIFAP, SIDIAP, THIN, RCGP RSC and PEDIANET respectively. The IRs for combined specific/unspecified pertussis were higher than TESSy, suggesting that some false positives had been included. In SIDIAP the estimated IR was 45.0 when discharge diagnoses were included. The sensitivity and PPV of combined PC specific and unspecific diagnoses for BorPer cases in SIDIAP were approximately 85% and 72%, respectively. Conclusion: Retrieving BorPer cases using only specific concepts has low sensitivity in PC databases, while including cases retrieved by unspecified concepts introduces false positives, which were approximately estimated to be 28% in one database. The share of cases that cannot be retrieved from a PC database because they are only seen in hospital was approximately estimated to be 15% in one database. This study demonstrated that quantifying the impact of different event-finding algorithms across databases and benchmarking with disease surveillance data can provide approximate estimates of algorithm validity

    Estimating malaria transmission intensity from Plasmodium falciparum serological data using antibody density models.

    Get PDF
    BACKGROUND: Serological data are increasingly being used to monitor malaria transmission intensity and have been demonstrated to be particularly useful in areas of low transmission where traditional measures such as EIR and parasite prevalence are limited. The seroconversion rate (SCR) is usually estimated using catalytic models in which the measured antibody levels are used to categorize individuals as seropositive or seronegative. One limitation of this approach is the requirement to impose a fixed cut-off to distinguish seropositive and negative individuals. Furthermore, the continuous variation in antibody levels is ignored thereby potentially reducing the precision of the estimate. METHODS: An age-specific density model which mimics antibody acquisition and loss was developed to make full use of the information provided by serological measures of antibody levels. This was fitted to blood-stage antibody density data from 12 villages at varying transmission intensity in Northern Tanzania to estimate the exposure rate as an alternative measure of transmission intensity. RESULTS: The results show a high correlation between the exposure rate estimates obtained and the estimated SCR obtained from a catalytic model (r = 0.95) and with two derived measures of EIR (r = 0.74 and r = 0.81). Estimates of exposure rate obtained with the density model were also more precise than those derived from catalytic models. CONCLUSION: This approach, if validated across different epidemiological settings, could be a useful alternative framework for quantifying transmission intensity, which makes more complete use of serological data
    • …
    corecore