820 research outputs found

    Blind Normalization of Speech From Different Channels

    Full text link
    We show how to construct a channel-independent representation of speech that has propagated through a noisy reverberant channel. This is done by blindly rescaling the cepstral time series by a non-linear function, with the form of this scale function being determined by previously encountered cepstra from that channel. The rescaled form of the time series is an invariant property of it in the following sense: it is unaffected if the time series is transformed by any time-independent invertible distortion. Because a linear channel with stationary noise and impulse response transforms cepstra in this way, the new technique can be used to remove the channel dependence of a cepstral time series. In experiments, the method achieved greater channel-independence than cepstral mean normalization, and it was comparable to the combination of cepstral mean normalization and spectral subtraction, despite the fact that no measurements of channel noise or reverberations were required (unlike spectral subtraction).Comment: 25 pages, 7 figure

    High temperature strength retention of Cu/Nb nanolaminates through dynamic strain ageing

    Get PDF
    The mechanical properties of Cu/Nb metallic nanolaminates with different layer thickness (7, 16, 34 and 63 nm) were studied by means of micropillar compression tests from room temperature to 400 C. Both strain-rate jump and constant strain rate tests were carried out and they showed evidence of dynamic strain ageing in the nanolaminates with 7, 16 and 34 nm layer thickness deformed at 200 C. Dynamic strain ageing was accompanied by a reduction of the strain rate sensitivity to 0, high strength retention at 200 C and the development of shear localization of the deformation at low strains (5%-6%) that took place along the Nb layers in the nanolaminates. Atom probe tomography of the deformed specimens revealed the presence of O in solid solution in the Nb layers but not in the Cu layers. Thus, diffusion of O atoms to the mobile dislocations in Nb was found to be the origin of the dynamic strain ageing in the Cu/Nb nanolaminates around 200 C. This mechanism was not found at higher temperatures (400 C) because deformation was mainly controlled by stress-assisted diffusion in the Cu layers. This discovery shows a novel strategy to enhance the strength retention at high temperature of metallic nanolaminates through dynamic strain ageing of one the phases

    Time-Resolved Measurement of Interatomic Coulombic Decay in Ne_2

    Get PDF
    The lifetime of interatomic Coulombic decay (ICD) [L. S. Cederbaum et al., Phys. Rev. Lett. 79, 4778 (1997)] in Ne_2 is determined via an extreme ultraviolet pump-probe experiment at the Free-Electron Laser in Hamburg. The pump pulse creates a 2s inner-shell vacancy in one of the two Ne atoms, whereupon the ionized dimer undergoes ICD resulting in a repulsive Ne^{+}(2p^{-1}) - Ne^{+}(2p^{-1}) state, which is probed with a second pulse, removing a further electron. The yield of coincident Ne^{+} - Ne^{2+} pairs is recorded as a function of the pump-probe delay, allowing us to deduce the ICD lifetime of the Ne_{2}^{+}(2s^{-1}) state to be (150 +/- 50) fs in agreement with quantum calculations.Comment: 5 pages, 3 figures, accepted by PRL on July 11th, 201

    Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules

    Get PDF
    This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray Free-Electron Laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and dissociating, laseraligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.Comment: 24 pages, 10 figures, Faraday Discussions 17

    Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses

    Get PDF
    Citation: Boll, R., Erk, B., Coffee, R., Trippel, S., Kierspel, T., Bomme, C., . . . Rudenko, A. (2016). Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses. Structural Dynamics, 3(4). doi:10.1063/1.4944344Additional Authors: Marchenko, T.;Miron, C.;Patanen, M.;Osipov, T.;Schorb, S.;Simon, M.;Swiggers, M.;Techert, S.;Ueda, K.;Bostedt, C.;Rolles, D.;Rudenko, A.Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I21+. The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse. © 2016 Author(s)

    Direct observation of incommensurate magnetism in Hubbard chains

    Get PDF
    The interplay between magnetism and doping is at the origin of exotic strongly correlated electronic phases and can lead to novel forms of magnetic ordering. One example is the emergence of incommensurate spin-density waves with a wave vector that does not match the reciprocal lattice. In one dimension this effect is a hallmark of Luttinger liquid theory, which also describes the low energy physics of the Hubbard model. Here we use a quantum simulator based on ultracold fermions in an optical lattice to directly observe such incommensurate spin correlations in doped and spin-imbalanced Hubbard chains using fully spin and density resolved quantum gas microscopy. Doping is found to induce a linear change of the spin-density wave vector in excellent agreement with Luttinger theory predictions. For non-zero polarization we observe a decrease of the wave vector with magnetization as expected from the Heisenberg model in a magnetic field. We trace the microscopic origin of these incommensurate correlations to holes, doublons and excess spins which act as delocalized domain walls for the antiferromagnetic order. Finally, when inducing interchain coupling we observe fundamentally different spin correlations around doublons indicating the formation of a magnetic polaron
    corecore