164 research outputs found

    Persistent photovoltage in methylammonium lead iodide perovskite solar cells

    Get PDF
    Open circuit voltage decay measurements are performed on methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells to investigate the charge carrier recombination dynamics. The measurements are compared to the two reference polymer-fullerene bulk heterojunction solar cells based on P3HT:PC60BM and PTB7:PC70BM blends. In the perovskite devices, two very different time domains of the voltage decay are found, with a first drop on a short time scale that is similar to the organic solar cells. However, two major differences are also observed. 65-70% of the maximum photovoltage persists on much longer timescales, and the recombination dynamics are dependent on the illumination intensity.Comment: 5 pages, 3 figure

    [Ir(C^N)2(N^N)]+ emitters containing a naphthalene unit within a linker between the two cyclometallating ligands

    Get PDF
    The synthesis of four cyclometallated [Ir(C^N) 2 (N^N)][PF 6 ] compounds in which N^N is a substituted 2,2’- -bipyridine (bpy) ligand and the naphthyl-centred ligand 2,7-bis(2-(2-(4-(pyridin-2-yl)phenoxy)ethoxy) ethoxy)naphthalene provides the two cyclometallating C^N units is reported. The iridium( III ) complexes have been characterized by 1 H and 13 C NMR spectroscopies, mass spectrometry and elemental analysis, and their electrochemical and photophysical properties are described. Comparisons are made with a model [Ir(ppy) 2 (N^N)][PF 6 ] compound (Hppy = 2-phenylpyridine). The complexes containing the naphthyl-unit exhibit similar absorption spectra and excitation at 280 nm leads to an orange emission. The incorporation of the naphthalene unit does not lead to a desirable blue contribution to the emission. Density functional theory calculations were performed to investigate the geometries of the complexes in their ground and first triplet excited states, as well as the energies and compositions of the highestoccupied and lowest unoccupied molecular orbital (HOMO and LUMO) manifolds. Trends in the HOMO– LUMO gaps agree with those observed electrochemically. The energy difference between the LUMO and the lowest unoccupied MO located on the naphthyl unit (LUMO+7) is large enough to explain why there is no contribution from the naphthyl-centred triplet excited state to the phosphorescence emission. Singlet excited states were also investigated. Light-emitting electrochemical cells (LECs) using the [Ir(C^N) 2 (N^N)][PF 6 ] and [Ir(ppy) 2 (N^N)][PF 6 ] complexes in the emissive layer were made and evaluated. The presence of the naphthyl-bridge between the cyclometallating units does not significantly alter the device response

    Control of charge trapping in a photorefractive polymer

    Get PDF
    Modification of the trap density of the photorefractive polymer composite poly(N-vinyl carbazole) (PVK), 2,4,7-trinitro-9-fluorenone (TNF) and N,N-diethyl-para-nitroaniline (EPNA) was achieved with the addition of 4-(diethylamino)benzaldehyde diphenylhydrazone (DEH). Measurements of the response time, the phase shift and the amplitude of the photorefractive grating are presented

    Photorefractive polymer composite with net gain and subsecond response at 633 nm

    Get PDF
    By combining the well-known photoconductor poly(N-vinyl carbazole) sensitized with 2,4,7 trinitro-9-fluorenone and the electrooptic molecule N,N,diethyl-substituted para-nitroaniline, which is transparent at 633 nm, a photorefractive polymer composite suitable for applications with He-Ne lasers was developed. Net gain of 18 cm-1 and 400 ms response time were measured on a 65-mum-thick sample

    Shine bright or live long: substituent effects in [Cu(N^N)(P^P)]+-based light-emitting electrochemical cells where N^N is a 6-substituted 2,2'-bipyridine

    Get PDF
    We report [Cu(P^P)(N^N)][PF6] complexes with P^P = bis(2-(diphenylphosphino)phenyl)ether (POP) or 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos) and N^N = 6-methyl-2,2′-bipyridine (Mebpy), 6-ethyl-2,2′-bipyridine (Etbpy), 6,6′-dimethyl-2,2′-bipyridine (Me2bpy) or 6-phenyl-2,2′-bipyridine (Phbpy). The crystal structures of [Cu(POP)(Phbpy)][PF6]·Et2O, [Cu(POP)(Etbpy)][PF6]·Et2O, [Cu(xantphos)(Me2bpy)][PF6], [Cu(xantphos)(Mebpy)][PF6]·CH2Cl2·0.4Et2O, [Cu(xantphos)(Etbpy)][PF6]·CH2Cl2·1.5H2O and [Cu(xantphos)(Phbpy)][PF6] are described; each copper(I) centre is distorted tetrahedral. In the crystallographically determined structures, the N^N domain in [Cu(xantphos)(Phbpy)]+ and [Cu(POP)(Phbpy)]+ is rotated ∼180° with respect to its orientation in [Cu(xantphos)(Mebpy)]+, [Cu(POP)(Etbpy)]+ and [Cu(xantphos)(Etbpy)]+; in each complex containing xantphos, the xanthene ‘bowl’ retains the same conformation in the solid-state structures. The two conformers resulting from the 180° rotation of the N^N ligand were optimized at the B3LYP-D3/(6-31G**+LANL2DZ) level and are close in energy for each complex. Variable temperature NMR spectroscopy evidences the presence of two conformers of [Cu(xantphos)(Phbpy)]+ in solution which are related by inversion of the xanthene unit. The complexes exhibit MLCT absorption bands in the range 378 to 388 nm, and excitation into each MLCT band leads to yellow emissions. Photoluminescence quantum yields (PLQYs) increase from solution to thin-film and powder; the highest PLQYs are observed for powdered [Cu(xantphos)(Mebpy)][PF6] (34%), [Cu(xantphos)(Etbpy)][PF6] (37%) and [Cu(xantphos)(Me2bpy)][PF6] (37%) with lifetimes of 9.6–11 μs. Density functional theory calculations predict that the emitting triplet (T1) involves an electron transfer from the Cu–P^P environment to the N^N ligand and therefore shows a 3MLCT character. T1 is calculated to be ∼0.20 eV lower in energy than the first singlet excited state (S1). The [Cu(P^P)(N^N)][PF6] ionic transition-metal (iTMC) complexes were tested in light-emitting electrochemical cells (LECs). Turn-on times are fast, and the LEC with [Cu(xantphos)(Me2bpy)][PF6] achieves a maximum efficacy of 3.0 cd A−1 (luminance = 145 cd m−2) with a lifetime of 1 h; on going to the [Cu(xantphos)(Mebpy)][PF6]-based LEC, the lifetime exceeds 15 h but at the expense of the efficacy (1.9 cd A−1). The lifetimes of LECs containing [Cu(xantphos)(Etbpy)][PF6] and [Cu(POP)(Etbpy)][PF6] exceed 40 and 80 h respectively

    Towards field specific phosphate applications norms with machine learning

    Get PDF
    Efficient use of animal manure is an important link in the nutrient cycle in agricultural systems. On Dutch dairy farms, most manure is applied on grass and cropland, with maize as main crop. With the aim of balancing P input and output at field level, which is the idea behind the currently used, but rather fixed, ..

    Quantitative comparison between different methods for the determination of the amplified spontaneous emission threshold in dye-polymer blends and perovskite thin films

    Get PDF
    Amplified Spontaneous Emission (ASE) properties and ASE threshold are usually investigated for the characterization of a candidate active material for laser applications. However, the comparison among different materials is often hampered by the use in literature of several different methods to estimate the ASE threshold. In this work we quantitatively compare the ASE threshold values obtained by using the most employed methods in dye-doped polymer and lead halide perovskite thin films, highlighting the dependence of the value obtained on the applied method

    Evidence of Band Bending Induced by Hole Trapping at MAPbI3 Perovskite / Metal Interface

    No full text
    International audienceElectron injection by tunneling from a gold electrode and hole transport properties in polycrystalline MAPbI3 has been investigated using variable temperature experiments and numerical simulations. The presence of a large and unexpected band bending at the Au/MAPbI3 interface is revealed and attributed to the trapping of holes, which enhances the injection of electrons via tunneling. These results elucidate the role of volume and interface defects in state-of-the-art hybrid perovskite semiconductors

    Transient behavior of photorefractive gratings in a polymer

    Get PDF
    The transient behavior of photorefractive gratings in the polymer composite poly(N-vinyl carbazole) (PVK), 2,4,7-trinitro-9-fluorenone (TNF), and N,N-diethyl-para-nitroaniline (EPNA) doped with various amounts of 4-(diethylamino)benzaldehyde diphenylhydrazone (DEH) is presented. The influence on the hole drift mobility due to the change in the trap density induced by DEH, was directly measured. (C) 1995 American Institute of Physics
    • …
    corecore