26 research outputs found

    DArT markers for the rye genome - genetic diversity and mapping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Implementation of molecular breeding in rye (<it>Secale cereale </it>L.) improvement programs depends on the availability of high-density molecular linkage maps. However, the number of sequence-specific PCR-based markers available for the species is limited. Diversity Arrays Technology (DArT) is a microarray-based method allowing for detection of DNA polymorphism at several thousand loci in a single assay without relying on DNA sequence information. The objective of this study was the development and application of Diversity Arrays technology for rye.</p> <p>Results</p> <p>Using the <it>Pst</it>I/<it>Taq</it>I method of complexity reduction we created a rye diversity panel from DNA of 16 rye varieties and 15 rye inbred lines, including parents of a mapping population consisting of 82 recombinant inbred lines. The usefulness of a wheat diversity panel for identification of DArT markers for rye was also demonstrated. We identified 1022 clones that were polymorphic in the genotyped ILs and varieties and 1965 clones that differentiated the parental lines L318 and L9 and segregated in the mapping population. Hierarchical clustering and ordination analysis were performed based on the 1022 DArT markers to reveal genetic relationships between the rye varieties and inbred lines included in the study. Chromosomal location of 1872 DArT markers was determined using wheat-rye addition lines and 1818 DArT markers (among them 1181 unique, non-cosegregating) were placed on a genetic linkage map of the cross L318 × L9, providing an average density of one unique marker every 2.68 cM. This is the most saturated rye linkage map based solely on transferable markers available at the moment, providing rye breeders and researches with a better choice of markers and a higher probability of finding polymorphic markers in the region of interest.</p> <p>Conclusion</p> <p>The Diversity Arrays Technology can be efficiently and effectively used for rye genome analyses - assessment of genetic similarity and linkage mapping. The 11520-clone rye genotyping panel with several thousand markers with determined chromosomal location and accessible through an inexpensive genotyping service is a valuable resource for studies on rye genome organization and in molecular breeding of the species.</p

    Verification of taxonomic relationships within the genus Secale (Poaceae: Pooideae: Triticeae) based on multiple molecular methods

    Get PDF
    This study aimed to verify the taxonomic relationships within the genus Secale. The plant material included 16 wild rye accessions from four species. Two approaches were applied: 1) whole genome scanning using three molecular marker systems: diversity arrays technology sequencing, simple sequence repeats and sequence-specific amplification polymorphism; and 2) characterisation based on polymorphisms within the sequences of two genes involved in benzoxazinoid biosynthesis: ScBx1 and ScBx5. Bayesian and neighbour-joining clustering and principal coordinate analysis were applied to illustrate relationships among species and accessions of Secale based on genetic distance (GD) matrices. Pearson’s correlation analysis between GD matrices was conducted. Clustering of Secale accessions revealed that S. sylvestre samples were the most divergent. The remaining accessions formed two clusters. One of them comprised S. strictum accessions while the second cluster consisted of subspecies of S. cereale, the species S. vavilovii and S. strictum subsp. ciliatoglume

    A High Density Consensus Map of Rye (Secale cereale L.) Based on DArT Markers

    Get PDF
    L.) is an economically important crop, exhibiting unique features such as outstanding resistance to biotic and abiotic stresses and high nutrient use efficiency. This species presents a challenge to geneticists and breeders due to its large genome containing a high proportion of repetitive sequences, self incompatibility, severe inbreeding depression and tissue culture recalcitrance. The genomic resources currently available for rye are underdeveloped in comparison with other crops of similar economic importance. The aim of this study was to create a highly saturated, multilocus linkage map of rye via consensus mapping, based on Diversity Arrays Technology (DArT) markers.Recombinant inbred lines (RILs) from 5 populations (564 in total) were genotyped using DArT markers and subjected to linkage analysis using Join Map 4.0 and Multipoint Consensus 2.2 software. A consensus map was constructed using a total of 9703 segregating markers. The average chromosome map length ranged from 199.9 cM (2R) to 251.4 cM (4R) and the average map density was 1.1 cM. The integrated map comprised 4048 loci with the number of markers per chromosome ranging from 454 for 7R to 805 for 4R. In comparison with previously published studies on rye, this represents an eight-fold increase in the number of loci placed on a consensus map and a more than two-fold increase in the number of genetically mapped DArT markers.Through the careful choice of marker type, mapping populations and the use of software packages implementing powerful algorithms for map order optimization, we produced a valuable resource for rye and triticale genomics and breeding, which provides an excellent starting point for more in-depth studies on rye genome organization

    DArT markers tightly linked with the Rfc1 gene controlling restoration of male fertility in the CMS-C system in cultivated rye (Secale cereale L.)

    Get PDF
    The Rfc1 gene controls restoration of male fertility in rye (Secale cereale L.) with sterility-inducing cytoplasm CMS-C. Two populations of recombinant inbred lines (RIL) were used in this study to identify DArT markers located on the 4RL chromosome, in the close vicinity of the Rfc1 gene. In the population developed from the 541×2020LM intercross, numerous markers tightly linked with the restorer gene were identified. This group contained 91 DArT markers and three SCARs additionally analyzed in the study. All these markers were mapped in the distance not exceeding 6 cM from the gene of interest. In the second mapping population (541×Ot1-3 intercross), only 9 DArT markers located closely to the Rfc1 gene were identified. Five of these DArT markers were polymorphic in both populations

    Genetic distinctiveness of rye in situ accessions from Portugal unveils a new hotspot of unexplored genetic resources

    Get PDF
    Rye(SecalecerealeL.)is a cereal crop of major importance in many parts of Europe and rye breeders are presently very concerned with th e restrict pool of rye genetic resources available.Such narrowing of rye genetic diversity results from the presence of“Petkus ”pool in most modern rye varieties as well as “Petkus”דCarsten” heterotic pool in hybrid rye breeding programs.Previous studies on rye’s genetic diversity revealed more over a common genetic background on landraces(exsitu) and cultivars,regardless of breeding level or geographical origin.Thus evaluation of in situ populations is of utmost importance to unveil “onfarm” diversity,which is largely undervalued.Here,we perform the first comprehensive assess ment of rye’s genetic diversity and population structuring using cultivars,exsitu landraces along a comprehensive sampling of insitu accessions from Portugal,through amolecular-directed analysis using SSRs markers.Rye genetic diversity and population structure analysis does not present any geographical trend but disclosed marked differences between genetic backgrounds of in situ accessions and those of cultivars/exsitu collections.Such genetic distinctiveness of insitu accessions highlights their unexplored potential as new genetic resources,which can be used to boost rye breeding strategies and the production of new varieties.Overall,our study successfully demonstrates the high prospective impact of comparing genetic diversity and structure of cultivars,exsitu,and in situ samples in ascertaining the status of plant genetic resources (PGR)info:eu-repo/semantics/publishedVersio
    corecore