1,237 research outputs found
Indexing of Historical Document Images: Ad Hoc Dewarping Technique for Handwritten Text
This work presents a research project, named XDOCS, aimed at extending to a much wider audience the possibility to access a variety of historical documents published on the web. The paper presents an overview of the indexing process that will be used to achieve the goal, focusing on the adopted dewarping technique. The proposed dewarping approach performs its task with the help of a transformation model which maps the projection of a curved surface to a 2D rectangular area. The novelty introduced with this work regards the possibility of applying dewarping to document images which contain both handwritten and typewritten text
POLITICAL ELECTIONS FOR MARKETERS
SrFe12O19 coatings, intended as electromagnetic wave absorbers, were produced by atmospheric plasma spraying (APS) using two different kindsof feedstock powders: spray-dried agglomerates of micrometric SrFe12O19 particles (type-A) or spray-dried agglomerates of raw materials (SrCO3,Fe2O3), reactively sintered at 1100 ◦C (type-B).During spraying, type-A agglomerates either remain unmelted, producing porous coating regions where crystalline hexaferrite is retained, orare disrupted into smaller granules which melt completely, resulting in dense coating regions with no crystalline hexaferrite.The sintered type-B agglomerates possess higher cohesive strength and do not fall apart: the finer ones melt completely, whereas, in the largerones, the outer region melts and infiltrates the porous unmelted core which retains crystalline hexaferrite. Dense coatings can therefore be obtainedwhile preserving high amounts of crystalline hexaferrite even inside the dense areas. Such coatings show magnetic properties that are promisingfor electromagnetic wave absorption applications
Optimized Connected Components Labeling with Pixel Prediction
In this paper we propose a new paradigm for connected components labeling, which employs a general approach to minimize the number of memory accesses, by exploiting the information provided by already seen pixels, removing the need to check them again. The scan phase of our proposed algorithm is ruled by a forest of decision trees connected into a single graph. Every tree derives from a reduction of the complete optimal decision tree. Experimental results demonstrated that on low density images our method is slightly faster than the fastest conventional labeling algorithms
XDOCS: An Application to Index Historical Documents
Dematerialization and digitalization of historical documents are key elements for their availability, preservation and diffusion. Unfortunately, the conversion from handwritten to digitalized documents presents several technical challenges.
The XDOCS project is created with the main goal of making available and extending the usability of historical documents for a great variety of audience, like scholars, institutions and libraries.
In this paper the core elements of XDOCS, i.e. page dewarping and word spotting technique, are described and two new applications, i.e. annotation/indexing and search tool, are presented
YACCLAB - Yet Another Connected Components Labeling Benchmark
The problem of labeling the connected components (CCL) of a binary image is well-defined and several proposals have been presented in the past. Since an exact solution to the problem exists and should be mandatory provided as output, algorithms mainly differ on their execution speed. In this paper, we propose and describe YACCLAB, Yet Another Connected Components Labeling Benchmark. Together with a rich and varied dataset, YACCLAB contains an open source platform to test new proposals and to compare them with publicly available competitors. Textual and graphical outputs are automatically generated for three kinds of test, which analyze the methods from different perspectives. The fairness of the comparisons is guaranteed by running on the same system and over the same datasets. Examples of usage and the corresponding comparisons among state-of-the-art techniques are reported to confirm the potentiality of the benchmark
Development of matte finishes in electrostatic (EFB) and conventional hot dipping (CHDFB) fluidized bed coating process
This study focuses on the correlation between the thermo-rheological properties of a thermosetting powder coating system with its surface structure build-up. Epoxy powder coating systems, which displayed surface matting and surface wrinkling, were examined. Firstly, the evolution of the complex viscosity was correlated with the cure kinetic. Secondly, the structure build-up on the surface of the coatings was investigated with a combined SEM-CLA profilometry analysis at different stages of curing process for both EFB and CHDFB coating processes. Different finishes were found to characterize the films applied by using EFB and CHDFB coating processes as a result of the different way the film is heated by. Finally, a strict relationship of film morphology to the degree of conversion and to the evolution of the complex viscosity was found out for both EFB and CHDFB coating processes. The surface structure is built up after gelation point and continues to evolve after gelation with a full development of the film fine structure. Differences were observed in the surface structure build-up when different curing temperature was used, thereby indicating an influence of minimum viscosity on achievable finishing. These experimental results lead to further advances in a better understanding of the formation of surface topography and morphology of polymeric films. They also provide important indications for the settings of curing parameters in both EFB and CHDFB coating processes as well as for the development of new powder coating formulations. © 2007 Elsevier B.V. All rights reserved
Two More Strategies to Speed Up Connected Components Labeling Algorithms
This paper presents two strategies that can be used to improve the speed of Connected Components Labeling algorithms. The first one operates on optimal decision trees considering image patterns
occurrences, while the second one articulates how two scan algorithms can be parallelized using multi-threading. Experimental results demonstrate that the proposed methodologies reduce the total execution time of state-of-the-art two scan algorithms
Microstructure-based thermo-mechanical modelling of thermal spray coatings
This paper demonstrates how microstructure-based finite element (FE) modelling can be used to interpret and predict the thermo-mechanical behaviour of thermal spray coatings. Validation is obtained by comparison to experimental and/or literature data.Finite element meshes are therefore constructed on SEM micrographs of high velocity oxygen-fuel (HVOF)-sprayed hardmetals (WC-CoCr, WC-FeCrAl) and plasma-sprayed Cr2O3, employed as case studies. Uniaxial tensile tests simulated on high-magnification micrographs return micro-scale elastic modulus values in good agreement with depth-sensing Berkovich micro-indentation measurements. At the macro-scale, simulated and experimental three-point bending tests are also in good agreement, capturing the typical size-dependency of the mechanical properties of these materials. The models also predict the progressive stiffening of porous plasma-sprayed Cr2O3 due to crack closure under compressive loading, in agreement with literature reports.Refined models of hardmetal coatings, accounting for plastic behaviours and failure stresses, predict crack initiation locations as observed by indentation tests, highlighting the relevance of stress concentrations around microstructural defects (e.g. oxide inclusions).Sliding contact simulations between a hardmetal surface and a small spherical asperity reproduce the fundamental processes in tribological pairings. The experimentally observed "wavy" morphologies of actual wear surfaces are therefore explained by a mechanism of micro-scale plastic flow and matrix extrusion
Effect of the suspension composition on the microstructural properties of high velocity suspension flame sprayed (HVSFS) Al2O3 coatings
Seven different Al2O3-based suspensions were prepared by dispersing two nano-sized Al2O3 powders (having analogous size distribution and chemical composition but different surface chemistry), one micron-sized powder and their mixtures in a water+isopropanol solution. High velocity suspension flame sprayed (HVSFS) coatings were deposited using these suspensions as feedstock and adopting two different sets of spray parameters. The characteristics of the suspension, particularly its agglomeration behaviour, have a significant influence on the coating deposition mechanism and, hence, on its properties (microstructure, hardness, elastic modulus). Dense and very smooth (Ra ~ 1.3 μm) coatings, consisting of well- flattened lamellae having a homogeneous size distribution, are obtained when micron-sized (~1 -2 μm) powders with low tendency to agglomeration are employed. Spray parameters favouring the break-up of the few agglomerates present in the suspension enhance the deposition efficiency (up to >50%), as no particle or agglomerate larger than ~2.5 μm can be fully melted. Nano-sized powders, by contrast, generally form stronger agglomerates, which cannot be significantly disrupted by adjusting the spray parameters. If the chosen nanopowder forms small agglomerates (up to few microns), the deposition efficiency is satisfactory and the coating porosity is limited, although the lamellae generally have a wider size distribution, so that roughness is somewhat higher. If the nanopowder forms large agglomerates (on account of its surfacechemistry), poor deposition efficiencies and porous layers are obtained. Although suspensions containing the pure micron-sized powder produce the densest coatings, the highest deposition efficiency (~70%) is obtained by suitable mixtures of micron-and nano-sized powders, on account of synergistic effect
Microstructural and tribological comparison of HVOF-sprayed and post-treated M-Mo-Cr-Si (M = Co, Ni) alloy coatings
High velocity oxygen-fuel (HVOF)-sprayed wear resistant Co-28%Mo-17%Cr-3%Si and Ni-32%Mo-15%Cr-3%Si coatings, both as-sprayed and after heat treatments at 600 degrees C for 1 h, have been studied. Particularly, their dry sliding wear behaviour has been compared by ball-on-disk tests against different counterbodies (100Cr6 steel and sintered alumina), and differences were discussed based on microstructural characteristics and micromechanical properties (Vickers microindentation and scratch test responses). As-sprayed coatings contain oxide stringers, are mostly amorphous and display rather low Vickers microhardness (about 7.4 GPa for the Co-based and 6.2 GPa for the Ni-based), toughness and elastic modulus. Heat-treated ones display sub-micrometric crystalline intermetallics, improving hardness (9.6 GPa and 7.4 GPa, respectively) and elastic modulus. Scratch tests indicate greater brittleness of the Ni-based alloy (higher tendency to cracking). Due to low hardness and toughness, both as-sprayed coatings undergo wear loss against steel and alumina counterparts. The more plastic Co-based alloy undergoes higher adhesive wear against steel and lower abrasive wear against alumina; the situation is reversed for the Ni-based alloy. After heat treatment, the wear loss against steel is very low for both coatings; abrasive wear still occurs against alumina. (c) 2007 Elsevier B.V. All rights reserved
- …
