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Abstract—The problem of labeling the connected components
(CCL) of a binary image is well-defined and several proposals
have been presented in the past. Since an exact solution to the
problem exists and should be mandatory provided as output,
algorithms mainly differ on their execution speed. In this paper,
we propose and describe YACCLAB, Yet Another Connected
Components Labeling Benchmark. Together with a rich and
varied dataset, YACCLAB contains an open source platform to
test new proposals and to compare them with publicly available
competitors. Textual and graphical outputs are automatically
generated for three kinds of test, which analyze the methods
from different perspectives. The fairness of the comparisons is
guaranteed by running on the same system and over the same
datasets. Examples of usage and the corresponding comparisons
among state-of-the-art techniques are reported to confirm the
potentiality of the benchmark.

I. INTRODUCTION

The last 20 years have been really significant for both
computer vision and image processing, and huge advance-
ments have been made. Part of the responsibility for this
huge progress may be credited to the broad access to public
image and video datasets. Even if datasets have been blamed
for narrowing the focus of research on object recognition,
reducing it to a single benchmark performance number, it is
now clear that the ability to compare different techniques on
the same data allows the reader to chose which algorithm suits
his needs best [1].

Performance must be quantified in order for objective
comparisons to be made [2]. The question is: “Is there any
reason not to use a common benchmark?” We are not alone in
believing that the answer is a sound: “No.” One point which
may remain open is how to perform a fair evaluation, and
many algorithms seem to have been designed without explicit
consideration of the statistical character of the input data at all:
this makes it difficult to produce any quantitative prediction
of performance [3].

But there are some specific aspects of image processing in
which the expected result is known, and this lessens the burden
of the evaluator, since, after checking that the result is correct,
the main question left is to measure how fast an algorithm
is. The problem of labeling the connected components of a
binary image is such a problem, so one would expect every
paper on the subject to focus on the same evaluation method
and data. This is not the case. In recent years, many novel

proposals have been published (and one of the authors of this
paper is responsible for one of those) and almost none of them
compared on the same data.

This paper tackles the problem of evaluating the speed
of execution of different strategies to solve the Connected
Components Labeling (CCL) problem on binary images.

When talking of “speed of execution”, one should answer
to three questions:

1) on what data?
2) on which machine?
3) with which implementation?

We answer the first question by providing a public dataset of
binary images without any license limitations, or synthetically
generated ones. We tried to cover different application sce-
narios for CCL algorithms such as motion analysis, document
processing, and OCR.

We then provide an open-source C++ project with a very
permissive license, so the answer to the second question is:
“Yours.” Anyone will be able to take the provided algorithms
and test them on his own setting, verifying any claim found in
the literature (ours included). Another element of variability,
which may not be so significant but still has a some impact, is
the compiler used. So also that is taken care by the availability
of the source code.

The final question is probably the hardest one, because
providing source code is, unfortunately, not a common re-
quirement for papers to be published. So our weakest answer
is the third one: “with our implementation, if the authors did
not provide source code.” A positive note is that being our
project open source, any author believing we did him wrong
is welcome to provide a better implementation than ours.

The evaluation framework is unimaginatively called Yet
Another Connected Components Labeling Benchmark (YAC-
CLAB in short), and the accompanying dataset is the YAC-
CLAB Dataset. If this already convinced you, the project can
be found at https://github.com/prittt/YACCLAB. Oth-
erwise, Section II describes the dataset, Section III provides
some details on how the framework works and how to extend
it, and Section IV summarizes the algorithms we already
provide in YACCLAB. Section V shows how the currently
implemented algorithms perform on our machines and serves
as a showcase for the automatically generated outputs. Finally,
in Section VI, we draw the conclusions.
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Fig. 1. Sample images from the YACCLAB dataset.

II. THE YACCLAB DATASET

Following a common practice in the literature, the YAC-
CLAB dataset includes both synthetic and real images. All
images are provided in 1 bit per pixel PNG format, with 0
(black) being background and 1 (white) being foreground.
Images are organized by folders as follows.

A set of synthetic random noise images has been used in
many papers [4], [5], [6]. We have selected and included
in YACCLAB the publicly available set of [6], because it
is the only one already published and already used in other
works [7], [8], [9]. This allows the researchers to easily com-
pare their results with the literature. The images contain black
and white random noise with 9 different foreground densities
(10% up to 90%), from a low resolution of 32×32 pixels to
a maximum resolution of 4096×4096 pixels, allowing to test
the scalability and the effectiveness of different approaches
when the number of labels gets high. For every combination
of size and density, 10 images are provided for a total of 720
images. The resulting subset allows to evaluate performance
both in terms of scalability on the number of pixels and on
the number of labels (density).

The second dataset included is composed by the Otsu-
binarized version of the MIRflickr dataset [10], publicly avail-
able under a Creative Commons License. It contains 25,000
standard resolution images taken from Flickr. These images
have an average resolution of 0.17 megapixels, there are few
connected components (495 on average) and are generally
composed of not too complex patterns, so the labeling is quite
easy and fast. This subset serves again as a comparison with
already published results.

Two other parts are included in the YACCLAB Dataset,
in order to cover for Document Analysis applications. The
first dataset is a set of 104 images scanned from a version
of the Hamlet found on Project Gutenberg (http://www.
gutenberg.org). The second one is the Tobacco800 Doc-
ument Image Database. It is composed of 1290 document
images and is a realistic database for document image analysis
research as these documents were collected and scanned
using a wide variety of equipment over time. Resolutions of
documents in Tobacco800 vary significantly from 150 to 300

DPI and the dimensions of images range from 1200 by 1600
to 2500 by 3200 pixels [11], [12], [13]. Since CCL is one
of the initial preprocessing steps in most layout analysis or
OCR algorithms, these two subsets allow to test the algorithm
performance in such scenarios.

The final set of images included in YACCLAB comes from
3DPeS (3D People Surveillance Dataset [14]), a surveillance
dataset designed mainly for people re-identification in multi
camera systems with non-overlapped fields of view. 3DPeS
can be also exploited to test many other tasks, such as people
detection, tracking, action analysis and trajectory analysis. The
background models for all cameras are provided, so a very
basic technique of motion segmentation has been applied to
generate the foreground binary masks, i.e., background sub-
traction and fixed thresholding. The analysis of the foreground
masks to remove small connected components and for nearest
neighbor matching is a common application for CCL.

III. THE YACCLAB PROJECT

YACCLAB contains an open source C++ project which
runs and tests CCL algorithms on the collection of datasets
described in the previous section. Beside running a CCL
algorithm and testing its correctness, YACCLAB performs
three more kinds of test: average run-time test, density test
and size test, in which the performance of the algorithms are
evaluated with images of increasing density and size.

To check the correctness of an implementation, the output
of an algorithm is compared with that of the OpenCV CCL
function, which is assumed to be a correct reference point.
Notice that 8-connectivity is always used. A colorized version
of the input images can also be produced, to visually check
the output and investigate possible labeling errors.

Average run-time tests, instead, execute an algorithm on
every image of a dataset. The process can be repeated more
times in a single test, to get the minimum execution time
for each image: this allows to get more reproducible results
and overlook delays produced by other running processes. It
is also possible to compare the execution speed of different
algorithms on the same dataset: in this case, selected algo-
rithms are executed sequentially on every image of the dataset.

http://www.gutenberg.org
http://www.gutenberg.org


TABLE I
YACCLAB CONFIGURATION PARAMETERS.

Parameter name Description
input path Folder on which datasets are placed
output path Folder on which result are stored
write n labels Whether to report the number of Connected

Components in output files
Correctness tests

check 8connectivity Whether to perform correctness tests
check list List of datasets on which CCL algorithms

should be checked
Density and size tests

ds perform Whether to perform density and size tests
ds colorLabels Whether to output a colorized version of input

images
ds testsNumber Number of runs
ds saveMiddleTests Whether to save the output of single runs, or

only a summary of the whole test
Average execution time tests

at perform Whether to perform average execution time
tests

at colorLabels Whether to output a colorized version of input
images

at testsNumber Number of runs
at saveMiddleTests Whether to save the output of single runs, or

only a summary of the whole test
averages tests List of algorithms on which average execution

time tests should be run
Algorithm configuration

CCLAlgorithmsFunc List of available algorithms (function names)
CCLAlgorithmsName List of available algorithms (display names for

charts)

Results are presented in three different formats: a plain text
file, histogram charts, either in color or in gray-scale, and a
LATEX table, which can be directly included in research papers.

Finally, density and size tests check the performance of
different CCL algorithms when they are executed on images
with varying foreground density and size. To this aim, a list
of algorithms selected by the user is run sequentially on every
image of the test random dataset. As for run-time tests, it is
possible to repeat this test for more than one run. The output
is presented as both plain text and charts. For a density test,
the mean execution time of each algorithm is reported for
densities ranging from 10% up to 90%, while for a size test
the same is reported for resolutions ranging from 32× 32 up
to 4096× 4096. A showcase will be presented in Section V.

A configuration file placed in the installation folder lets the
user specify which kind of test should be performed, on which
datasets and on which algorithms. A complete description of
all configuration parameters is reported in Table I.

YACCLAB has been designed with extensibility in mind,
so that new resources can be easily integrated into the project.
A CCL algorithm is coded with a .h header file, which
declares a function implementing the algorithm, and a .cpp
source file which defines the function itself. The function must
follow a standard signature: its first parameter should be a
const reference to an OpenCV Mat1b matrix, containing the
input image, and its second parameter should be a reference
to a Mat1i matrix, which shall be populated with computed
labels. The function must also return an integer specifying the
number of labels found in the image, included background’s

one. For example:

int MyLabelingAlgorithm(const cv::Mat1b& img,
cv::Mat1i &imgLabels);

Once an algorithm has been added to YACCLAB, it is ready
to be tested and compared to the others. To include the newly
added algorithm in a test, it is sufficient to include its function
name in the CCLAlgorithmsFunc parameter (see Table I)
and a display name in the CCLAlgorithmsName parameter.
We look at YACCLAB as a growing effort towards better
reproducibility of CCL algorithms, so implementations of new
and existing labeling methods are welcome.

IV. AVAILABLE ALGORITHMS

Since version 3.0, OpenCV included CCL features. The
algorithm implemented is the one described in [15], [16],
which is basically equivalent to the one in [4]. It uses a
pixel based scanning with online equivalence resolution by
means of a union find technique with path compression, plus
a decision tree for accessing only the minimum number of
already scanned labeled pixels. This is the reference algo-
rithm implemented in YACCLAB and the source code comes
directly from the OpenCV repository. It has been simplified
just by removing the 4-connection case and any reference to
blob features computations. Also the use of InputArray
and OutputArray was removed in order to get a simpler
interface. All of these modifications do not impact on the
algorithm execution times, neither negatively nor positively.

In [6] we proved that different versions of the decision
tree are equivalent to the previous one and extended it to
Block Based scanning, that is scanning the image in 2 × 2
blocks. Building the decision tree for that case is much
harder, because of the large number of possible combinations.
In [17] we proposed a proved optimal strategy to build the
decision tree by means of a dynamic programming approach.
In YACCLAB we provide an implementation of the algorithm.
The only difference with the originally available algorithm is
the compliance with the new OpenCV funcion interface and
the use of the same strategy found in most OpenCV modules
to get the line pointer and then use it instead of the templated
operator(), which is really handy in designing algorithms,
but also known to slow down things considerably. The final
decision tree is generated by another program, so a caveat to
the reader is mandatory: the code is definitely ugly!

Another variation of Block Based analysis was proposed
in [9], which is reported to be faster than the previous one.
We also include this algorithm thanks to the availability of the
source code on the authors web pages, making the signature
compliant with our standards.

In [18] a different take on labeling was proposed, called
Light Speed Labeling. The paper has a well described pseu-
docode for the algorithm, and in the journal version [19],
further analysis has been performed, proposing also some
variations and stating that it is the fastest algorithm available.
One important note is that Light Speed Labeling is not always
correct: failures in exactly solving all equivalences is reported
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Fig. 2. Average run-time tests on a i7-4790 CPU @ 3.60 GHz with Windows.
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Fig. 3. Average run-time tests on a Xeon CPU E5-2609 v2 @ 2.50GHz with Linux.
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Fig. 4. Average run-time tests on a Intel Core Duo @ 2.8GHz with OSX.

by the authors in about 2% of the cases. To our knowledge, no
public implementation exists, so we are the first ones to really
make it available in YACCLAB. This is probably due to two
small mistakes in the pseudo code of [19]: a w was called n
because of a change in notation between the two papers and
a “step 2” was missing in a “for” loop. We implemented the
standard version –this is the name used in the paper– of LSL,
limiting the optimization again to just using raw row-pointers.

In order to demonstrate the importance of the algorithm used
to solve the label’s equivalences, we include an implementa-
tion of [20] which uses a two scan procedure with an online
label resolution algorithm, using an array-based structure to
store the label equivalences. This technique requires multiple
searches over the array at every Union operation, leading to a
clear non-linear behavior with respect to the number of labels.

As a representative of the contour tracing type of algorithms
we include [21] proposed in 2003. This approach clockwise
tags all pixels in both the contour and the immediately
external background area in a single operation. Then, during
the raster scan, an untagged boundary is found, a counter
clockwise contour tracing is performed for internal contours.
This technique proved to have a linear complexity with respect
to the number of labels and run quite fast, also because the
filling of the connected components (label propagation after

contour following) is cache-friendly for images stored in a
raster scan order.

V. CURRENT RESULTS

To make a first performance comparison and to showcase
automatically generated charts and tables, we have run each
algorithm in YACCLAB on all datasets and in three different
environments: a Windows PC with a i7-4790 CPU @ 3.60
GHz and Microsoft Visual Studio 2013, a Linux workstation
with a Xeon CPU E5-2609 v2 @ 2.50GHz and GCC 5.2, and
a Intel Core Duo @ 2.8 GHz running OS X with X Code 7.2.1.
Average run-time tests, as well as density and size tests, were
repeated 10 times, and for each image the minimum execution
time was considered.

In the following, we use acronyms to refer to the avail-
able algorithms: CT is the Contour Tracing approach by
Fu Chang et al. [21], CCIT is the algorithm by Wan-Yu
Chang et al. [9], DiStefano is the algorithm in [20], BBDT is
the Block Based with Decision Trees algorithm by Grana et
al. [6], LSL STD is the Light Speed Labeling algorithm by
Lacassagne et al. [19], SAUF is the Scan Array Union Find
algorithm by Wu et al. [16], which is the algorithm currently
included in OpenCV.

Figures 2, 3, and 4 report mean run-times for each platform
and dataset. As it can be noticed, YACCLAB provides an
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Fig. 5. Size and Density tests.

effective way to compare CCL algorithms on heterogeneous
datasets and environments. Same results can be reported in
tabular form, as in Tables II, III, and IV. Execution times
vary from platform to platform, depending on the processor
performance as well as on the optimization carried out by
the compiler. However, with the implementations currently
included in YACCLAB, the method proposed in [6] always
shows the best performance.

Beside run-time tests, size and density test can be automat-
ically executed on the synthetic dataset. Figures 5(b), 5(d),

and 5(f) report execution times on all synthetic images and
platforms with respect to different image sizes. A linear
dependency of execution time with respect to the number
of pixels is highlighted for all algorithms, except from Di
Stefano’s, which shows, as expected, a worse performance
when the number of pixels is high.

Figures 5(a), 5(c), and 5(e), finally, report execution times
on the syntethic dataset, with respect to different levels of
foreground density. All algorithms show an increased ex-
ecution time on middle densities, because the number of



TABLE II
AVERAGE RESULTS IN MS ON A I7-4790 CPU @ 3.60 GHZ WITH

WINDOWS.

CT CCIT DiStefano BBDT LSL SAUF
MIRflickr 0.73 0.28 0.63 0.25 0.44 0.57
Tob800 12.77 8.98 10.32 7.13 27.48 9.35
3DPeS 0.97 0.69 0.78 0.53 1.97 0.73
Hamlet 9.47 5.67 7.14 4.73 17.93 6.12

TABLE III
AVERAGE RESULTS IN MS ON A XEON CPU E5-2609 V2 @ 2.50GHZ

WITH LINUX.

CT CCIT DiStefano BBDT LSL SAUF
MIRflickr 1.62 0.55 1.09 0.49 1.22 0.94
Tob800 27.52 11.78 14.49 9.56 30.76 13.39
3DPeS 1.97 0.80 1.06 0.72 1.44 0.86
Hamlet 18.56 7.21 9.71 6.10 12.62 7.05

TABLE IV
AVERAGE RESULTS IN MS ON A INTEL CORE DUO @ 2.8GHZ WITH OS X.

CT CCIT DiStefano BBDT LSL SAUF
MIRflickr 1.51 0.67 1.29 0.61 1.06 0.89
Tob800 30.71 26.41 21.79 17.39 60.53 22.01
3DPeS 1.64 1.01 1.34 1.00 3.43 1.03
Hamlet 21.47 14.98 14.01 10.23 34.06 13.12

labels and merges between equivalence classes is higher. Di
Stefano’s algorithm produces the worst performance in the
middle densities.

VI. CONCLUSION

In this paper we described two contributions to the image
processing community: a comprehensive dataset for comparing
Connected Components Labeling Algorithms and a portable
open source C++ project to test different algorithms on top of
it. No new algorithms were proposed, but this tool allows any
new improvement to be evaluated uniformly with respect to
existing proposals.

We are strongly in favor of testing paper results with source
code. It is not a lack of trust in the other researchers, but
a realistic need to compare. Instead of forcing everybody to
reimplement other algorithms’ code from scratch, and then
draw wrong conclusions because they overlooked a peculiarity
(probably insufficiently stressed in the original paper), we
support the fact that the inventor knows its creature best. So,
we welcome all contributions to YACCLAB in terms of new
algorithms, novel datasets for applications we did not consider,
or better implementations of what we already included. It is
not likely that the code we are providing is the best you can
write, so review and improvement is mandatory.

Further work is needed to systematically test these algo-
rithms on different machines to point out weaknesses and
strengths of the various proposals. And if you are going to
sport that your algorithm is the fastest in the world, please
make the source code available in YACCLAB.
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