58 research outputs found
Measurement of Turbulence in Superfluid 3He-B
The experimental investigation of superfluid turbulence in 3He-B is generally
not possible with the techniques which have been developed for 4He-II. We
describe a new method by which a transient burst of turbulent vortex expansion
can be generated in 3He-B. It is based on the injection of a few vortex loops
into rotating vortex-free flow. The time-dependent evolution of the quantized
vorticity is then monitored with NMR spectroscopy. Using these techniques the
transition between regular (i.e. vortex number conserving) and turbulent vortex
dynamics can be recorded at T ~ 0.6 Tc and a number of other characteristics of
turbulence can be followed down to a temperature of T ~ 0.4 Tc.Comment: 31 pages, 10 figure
Onset of turbulence in superfluid 3He-B and its dependence on vortex injection in applied flow
Vortex dynamics in 3He-B is divided by the temperature dependent damping into
a high-temperature regime, where the number of vortices is conserved, and a
low-temperature regime, where rapid vortex multiplication takes place in a
turbulent burst. We investigate experimentally the hydrodynamic transition
between these two regimes by injecting seed vortex loops into vortex-free
rotating flow. The onset temperature of turbulence is dominated by the roughly
exponential temperature dependence of vortex friction, but its exact value is
found to depend on the injection method.Comment: To be published in the proceedings of the 24th International
Conference on Low Temperature Physics - LT24, in Conference Proceedings of
the American Institute of Physic
On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas
A method for the asymmetric focusing of electron bunches, based on the active
plasma lensing technique is proposed. This method takes advantage of the strong
inhomogeneous magnetic field generated inside the capillary discharge plasma to
focus the ultrarelativistic electrons. The plasma and magnetic field parameters
inside the capillary discharge are described theoretically and modeled with
dissipative magnetohydrodynamic computer simulations enabling analysis of the
capillaries of rectangle cross-sections. Large aspect ratio rectangular
capillaries might be used to transport electron beams with high emittance
asymmetries, as well as assist in forming spatially flat electron bunches for
final focusing before the interaction point.Comment: 16 pages, 7 figures, 1 tabl
Laser beam coupling with capillary discharge plasma for laser wakefield acceleration applications
One of the most robust methods, demonstrated up to date, of accelerating
electron beams by laser-plasma sources is the utilization of plasma channels
generated by the capillary discharges. These channels, i.e., plasma columns
with a minimum density along the laser pulse propagation axis, may optically
guide short laser pulses, thereby increasing the acceleration length, leading
to a more efficient electron acceleration. Although the spatial structure of
the installation is simple in principle, there may be some important effects
caused by the open ends of the capillary, by the supplying channels etc., which
require a detailed 3D modeling of the processes taking place in order to get a
detailed understanding and improve the operation. However, the discharge
plasma, being one of the most crucial components of the laser-plasma
accelerator, is not simulated with the accuracy and resolution required to
advance this promising technology. In the present work, such simulations are
performed using the code MARPLE. First, the process of the capillary filling
with a cold hydrogen before the discharge is fired, through the side supply
channels is simulated. The main goal of this simulation is to get a spatial
distribution of the filling gas in the region near the open ends of the
capillary. A realistic geometry is used for this and the next stage
simulations, including the insulators, the supplying channels as well as the
electrodes. Second, the simulation of the capillary discharge is performed with
the goal to obtain a time-dependent spatial distribution of the electron
density near the open ends of the capillary as well as inside the capillary.
Finally, to evaluate effectiveness of the beam coupling with the channeling
plasma wave guide and electron acceleration, modeling of laser-plasma
interaction was performed with the code INF&RNOComment: 11 pages, 9 figure
Adsorption and two-body recombination of atomic hydrogen on He-He mixture films
We present the first systematic measurement of the binding energy of
hydrogen atoms to the surface of saturated He-He mixture films.
is found to decrease almost linearly from 1.14(1) K down to 0.39(1) K, when the
population of the ground surface state of He grows from zero to
cm, yielding the value K cm
for the mean-field parameter of H-He interaction in 2D. The experiments
were carried out with overall He concentrations ranging from 0.1 ppm to 5 %
as well as with commercial and isotopically purified He at temperatures
70...400 mK. Measuring by ESR the rate constants and for
second-order recombination of hydrogen atoms in hyperfine states and we
find the ratio to be independent of the He content and to
grow with temperature.Comment: 4 pages, 4 figures, all zipped in a sigle file. Submitted to Phys.
Rev. Let
Non-adiabatic cluster expansion after ultrashort laser interaction
AbstractWe used X-ray spectroscopy as a diagnostic tool for investigating the properties of laser-cluster interactions at the stage in which non-adiabatic cluster expansion takes place and a quasi-homogeneous plasma is produced. The experiment was carried out with a 10 TW, 65 fs Ti:Sa laser focused on CO2 cluster jets. The effect of different laser-pulse contrast ratios and cluster concentrations was investigated. The X-ray emission associated to the Rydberg transitions allowed us to retrieve, through the density and temperature of the emitting plasma, the time after the beginning of the interaction at which the emission occurred. The comparison of this value with the estimated time for the "homogeneous" plasma formation shows that the degree of adiabaticity depends on both the cluster concentration and the pulse contrast. Interferometric measurements support the X-ray data concerning the plasma electron density
Experimental and numerical studies of structure of cluster targets for femtosecond laser pulses
no abstrac
- …