41 research outputs found

    Seasonal changes of nuclear DNA fragmentation in boar spermatozoa in Spain

    Get PDF
    There are numerous cases when conventional spermiogram parameters are all within an acceptable range but boar subfertility persists. The total sperm nuclear DNA fragmentation index (tDFI) is a trait related to fertility and prolificacy problems that is not routinely evaluated in commercial AI boars. The aim of this research was to study the effect of the photoperiod, season and reproductive age of the boar on tDFI (measured by SCSA) of 1279 ejaculates from 372 different boars belonging to 6 different breeds located in 6 AI studs in Spain. tDFI data ranged from 0.018% to 20.1%. Although there was a significant single boar effect in the tDFI occurrence, a negative correlation between the tDFI and the age of the boar was found (p < 0.001). tDFI would decrease due to aging of the boar 0.66% each year old within the observed age range. After including age as a covariate in the ANCOVA, no differences were found in tDFI between photoperiods when the sperm collection date was evaluated. However, when the date of the production of semen in the testis was evaluated, the total percentage of spermatozoa with fragmented nuclear DNA was 1.46% higher in the increasing photoperiod in comparison to the decreasing photoperiod (p < 0.0001). On the other hand, for both dates, the lowest tDFI values corresponded to minimum day length for decreasing photoperiod phase (autumn), while the highest tDFI values were found in summer (maximum day length for decreasing photoperiod phase)

    Effect of milling process on particle size, morphology and magnetization in non-stoichiometric Fe2O3-MnO2.

    Get PDF
    High-energy milling process on ceramic material was analyzed, it process generate modifications on morphology and particle size, the process showed the last one relation with the crystallite size, about of structural analysis Rietveld refinement let identify anisotropy with the variations on crystalline planes and deformations occasioned by milling process, the particle size decrease with the process, similar tendency was observed on the images obtained by Scanning Electronic Microscopy, an result in this study was the variation on magnetization without chemical reaction under non-stoichiometric conditions and the agglomerates sizes observed on samples it is by process

    A Modeling Framework to Assess Strategies Alignment based on Collaborative Network Emotions

    Full text link
    [DE] The Collaborative Networks (CN) discipline has been largely studied in last decades, addressing different problems and proposing solutions for the robust establishment of collaborative processes, within the enterprises willing to collaborate. The main aim of CN research is, therefore, to generate approaches that enable creating effective relationships in the long term, to achieve stable and agile alliances. The concept of alignment among the CN partners has been considered since the beginning of CN research. Nevertheless, novel perspectives of study in CN, such as the consideration of collaborative emotional states, within the CN, have been introduced in recent years. This paper connects the research area of strategies alignment and the CN emotion models. Accordingly, a modelling framework to assess strategies alignment considering the emotional environment within the CN is proposed. The modelling framework allows representing how the enterprises emotions affect in the selection and alignment of formulated enterprises¿ strategiesAndres, B.; Ferrada, F.; Poler, R.; Camarinha-Matos, L. (2018). A Modeling Framework to Assess Strategies Alignment based on Collaborative Network Emotions. IFIP Advances in Information and Communication Technology. 534:349-361. https://doi.org/10.1007/978-3-319-99127-6_30S349361534Camarinha-Matos, L.M.: Collaborative networks in industry and the role of PRO-VE. Int. J. Prod. Manag. Eng. 2(2), 53–57 (2014)Andres, B., Poler, R.: Models, guidelines and tools for the integration of collaborative processes in non-hierarchical manufacturing networks: a review. Int. J. Comput. Integr. Manuf. 2(29), 166–201 (2016)Bititci, U., Martinez, V., Albores, P., Parung, J.: Creating and managing value in collaborative networks. Int. J. Phys. Distrib. Logist. Manag. 34(3/4), 251–268 (2004)Carbo, B.: Align the organization for improved supply chain performance. ASCET Proj. 2, 244–447 (2002)Macedo, P., Camarinha-Matos, L.: Value systems alignment analysis in collaborative networked organizations management. Appl. Sci. 7(12), 123 (2017)Andres, B., Poler, R.: A decision support system for the collaborative selection of strategies in enterprise networks. Decis. Support Syst. 91, 113–123 (2016)Andres, B., Macedo, P., Camarinha-Matos, L.M., Poler, R.: Achieving coherence between strategies and value systems in collaborative networks. In: Camarinha-Matos, L.M., Afsarmanesh, H. (eds.) PRO-VE 2014. IFIP AICT, vol. 434, pp. 261–272. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44745-1_26Ferrada, F., Camarinha-Matos, L.M.: A system dynamics and agent-based approach to model emotions in collaborative networks. In: Camarinha-Matos, L.M., Parreira-Rocha, M., Ramezani, J. (eds.) DoCEIS 2017. IFIP AICT, vol. 499, pp. 29–43. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56077-9_3Campuzano, F., Mula, J.: Supply Chain Simulation. A System Dynamics Approach for Improving Performance. Springer, London (2011). https://doi.org/10.1007/978-0-85729-719-8Camarinha-Matos, L.M., Afsarmanesh, H.: Collaborative networks: a new scientific discipline. J. Intell. Manuf. 16(4–5), 439–452 (2005)Vicsek, T.: Complexity: the bigger picture. Nature 418(6894), 131 (2002)Sterman, J., Richardson, G., Davidsen, P.: Modelling the estimation of petroleum resources in the United States. Technol. Forecast. Soc. Chang. 33(3), 219–249 (1998)Vlachos, D., Georgiadis, P., Iakovou, E.: A system dynamics model for dynamic capacity planning of remanufacturing in closed-loop supply chains. Comput. Oper. Res. 34(2), 367–394 (2007)Campuzano-Bolarín, F., Mula, J., Peidro, D.: An extension to fuzzy estimations and system dynamics for improving supply chains. Int. J. Prod. Res. 51(10), 3156–3166 (2013)Barton, P., Bryan, S., Robinson, S.: Modelling in the economic evaluation of health care: selecting the appropriate approach. J. Heal. Serv. Res. Policy 9(2), 110–118 (2004)Eldabi, T., Paul, R.J., Young, T.: Simulation modelling in healthcare: reviewing legacies and investigating futures. J. Oper. Res. Soc. Spec. Issue Oper. Res. Heal. 58(2), 262–270 (2007)Andres, B., Poler, R., Camarinha-Matos, L.M., Afsarmanesh, H.: A simulation approach to assess partners selected for a collaborative network. Int. J. Simul. Model. 16(3), 399–411 (2017)Gohari, A., Mirchi, A., Madan, K.: System dynamics evaluation of climate change adaptation strategies for water resources management in central Iran. Water Resour. Manag. 31(5), 1413–1434 (2007)Fishera, D., Norvell, J., Sonka, S., Nelson, M.J.: Understanding technology adoption through system dynamics modeling: implications for agribusiness management. Int. Food Agribus. Manag. Rev. 3, 281–296 (2000)Lyneisa, J.M.: System dynamics for market forecasting and structural analysis. Syst. Dyn. Rev. 16(1), 3–25 (2000)Borshchev, A., Filippov, A.: From system dynamics and discrete event to practical agent based modeling: reasons, techniques, tools. In: The 22nd International Conference of the System Dynamics Society (2004)Ferrada, F.: C-EMO: A Modeling Framework for Collaborative Network Emotions Doctoral dissertation, Nova University of Lisbon, Portugal (2017). https://run.unl.pt/handle/10362/26857Scherer, K.R.: Emotions are emergent processes: they require a dynamic computational architecture. Rev. Philos. Trans. R. Soc. Biol. Sci. 364(1535), 3459–3474 (2009

    Estudio cinético y mecanismos de reacciones en el proceso de depósito de aleaciones ternarias de Ni-P-Mo

    No full text
    Un depósito de Ni-P-Mo vía química genera un recubrimiento ingenieril empleado por su buena resistencia al desgaste y a la corrosión Los recubrimientos químicos Ni-P-Mo se obtienen por depósito auto catalítica empleando una solución de composición específica, en la que el sustrato cataliza la reacción. El objetivo de este trabajo es determinar la cinética de la reacción de depósito de recubrimientos autocatalíticos Ni-P-Mo de un baño de composición específica, a través de la determinación del consumo en reactivos, el incremento en peso del sustrato recubierto, el espesor y la microdureza del recubrimiento. Se encontró una velocidad media para el depósito de 1.61 mg.min-1cm-2, pero ésta es diferente para cada elemento. Durante la depósito, el factor determinante en la velocidad de depositación es el Mo debido a que (1) su depósito se inhibe por la presencia de fósforo en la solución que se codeposita con el níquel y (2) incrementos en la concentración de molibdato en la solución la hacen inestable. Los resultados obtenidos permiten proponer el mecanismo de codepósito Ni-P-Mo, a través del planteamiento de las reacciones que tienen lugar durante el proceso de depositación
    corecore