19 research outputs found

    Leukemia and occupational exposure to electromagnetic fields: An incident case-control study

    No full text
    The existence of an association between leukemia and electromagnetic fields (EMF) is still controversial. The results of epidemiologic studies of leukemia in occupational groups with exposure to EMF are inconsistent. Weak associations have been seen in a few studies. EMF assessment is lacking in precision. Reported dose-response relationships have been based on qualitative levels of exposure to EMF without regard to duration of employment or EMF intensity on the jobs. Furthermore, potential confounding factors in the associations were not often well controlled. The current study is an analysis of the data collected from an incident case-control study. The primary objective was to test the hypothesis that occupational exposure to EMF is associated with leukemia, including total leukemia (TL), myelogenous leukemia (MYELOG) and acute non-lymphoid leukemia (ANLL). Potential confounding factors: occupational exposure to benzene, age, smoking, alcohol consumption, and previous medical radiation exposures were controlled in multivariate logistic regression models. Dose-response relationships were estimated by cumulative occupational exposure to EMF, taking into account duration of employment and EMF intensity on the jobs. In order to overcome weaknesses of most previous studies, special efforts were made to improve the precision of EMF assessment. Two definitions of EMF were used and result discrepancies using the two definitions were observed. These difference raised a question as to whether the workers at jobs with low EMF exposure should be considered as non-exposed in future studies. In addition, the current study suggested use of lifetime cumulative EMF exposure estimates to determine dose-response relationship. The analyses of the current study suggest an association between ANLL and employment at selected jobs with high EMF exposure. The existence of an association between three types of leukemia and broader categories of occupational EMF exposure, is still undetermined. If an association does exist between occupational EMF exposure and leukemia, the results of the current study suggest that EMF might only be a potential factor in the promotion of leukemia, but not its initiation

    Urinary SPP1 has potential as a non‐invasive diagnostic marker for focal segmental glomerulosclerosis

    No full text
    Focal segmental glomerulosclerosis (FSGS) is a type of chronic glomerular nephropathy showing characteristic glomerular sclerosis, diagnosed by kidney biopsy. However, it is difficult and expensive to monitor disease progression with repeated renal biopsy in clinical practice, and thus here we explored the feasibility of urine biomarkers as non‐invasive diagnostic tools. We downloaded scRNA‐seq datasets of 20 urine cell samples and 3 kidney tissues and obtained two gene lists encoding extracellular proteins for bioinformatic analysis; in addition, we identified key EP‐Genes by immunohistochemical staining and performed bulk RNA sequencing with 12 urine samples. We report that urine cells and kidney cells were correlated. A total of 64 EP‐Genes were acquired by intersecting genes of distal tubular cluster with extracellular proteins. Function enrichment analysis showed that EP‐Genes might be involved in the immune response and extracellular components. Six key EP‐Genes were identified and correlated with renal function. IMC showed that key EP‐Genes were located mainly in tubules. Cross verification and examination of a urine RNAseq dataset showed that SPP1 had diagnostic potential for FSGS. The presence of urine SPP1 was primarily associated with macrophage infiltration in kidney, and the pathogenesis of FSGS may be related to innate immunity. Urinary cells seemed to be strongly similar to kidney cells. In summary, SPP1 levels reflect renal function and may have potential as a biomarker for non‐invasive diagnosis of FSGS
    corecore