64 research outputs found

    Splitting of multiple hydrogen molecules by bioinspired diniobium metal complexes: a DFT study

    Get PDF
    Splitting of molecular hydrogen (H2) into bridging and terminal hydrides is a common step in transition metal chemistry. Herein, we propose a novel organometallic platform for cleavage of multiple H2 molecules, which combines metal centers capable of stabilizing multiple oxidation states, and ligands bearing positioned pendant basic groups. Using quantum chemical modeling, we show that low-valent, early transition metal diniobium(II) complexes with diphosphine ligands featuring pendant amines can favorably uptake up to 8 hydrogen atoms, and that the energetics are favored by the formation of intramolecular dihydrogen bonds. This result suggests new possible strategies for the development of hydrogen scavenger molecules that are able to perform reversible splitting of multiple H2 molecules

    Structural Characterization of the P1+ Intermediate State of the P-Cluster of Nitrogenase

    Get PDF
    Nitrogenase is the enzyme that reduces atmospheric dinitrogen (N2) to ammonia (NH3) in biological systems. It catalyzes a series of single-electron transfers from the donor iron protein (Fe protein) to the molybdenum–iron protein (MoFe protein) that contains the iron–molybdenum cofactor (FeMo-co) sites where N2 is reduced to NH3. The P-cluster in the MoFe protein functions in nitrogenase catalysis as an intermediate electron carrier between the external electron donor, the Fe protein, and the FeMo-co sites of the MoFe protein. Previous work has revealed that the P-cluster undergoes redox-dependent structural changes and that the transition from the all-ferrous resting (PN) state to the two-electron oxidized P2+ state is accompanied by protein serine hydroxyl and backbone amide ligation to iron. In this work, the MoFe protein was poised at defined potentials with redox mediators in an electrochemical cell, and the three distinct structural states of the P-cluster (P2+, P1+, and PN) were characterized by X-ray crystallography and confirmed by computational analysis. These analyses revealed that the three oxidation states differ in coordination, implicating that the P1+ state retains the serine hydroxyl coordination but lacks the backbone amide coordination observed in the P2+ states. These results provide a complete picture of the redox-dependent ligand rearrangements of the three P-cluster redox states

    Heterolytic Scission of Hydrogen Within a Crystalline Frustrated Lewis Pair

    Get PDF
    We report the heterolysis of molecular hydrogen under ambient conditions by the crystalline frustrated Lewis pair (FLP) 1-{2-[bis (pentafluorophenyOboryl] phenyl -2, 2,6,6-tetrame-thylpiperidine (KCAT). The gas-solid reaction provides an approach to prepare the solvent-free, polycrystalline ion pair KCATH2 through a single crystal to single crystal transformation. The crystal lattice of KCATH2 increases in size relative to the parent KCAT by approximately 2%. Microscopy was used to follow the transformation of the highly colored red/orange KCAT to the colorless KCATH2 over a period of 2 h at 300 K under a flow of H-2 gas. There is no evidence of crystal decrepitation during hydrogen uptake. Inelastic neutron scattering employed over a temperature range from 4-200 K did not provide evidence for the formation of polarized H-2 in a precursor complex within the crystal at low temperatures and high pressures. However, at 300 K, the INS spectrum of KCAT transformed to the INS spectrum of KCATH2. Calculations suggest that the driving force is more favorable in the solid state compared to the solution or gas phase, but the addition of H-2 into the KCAT crystal is unfavorable. Ab Initio methods were used to calculate the INS spectra of KCAT, KCATH2, and a possible precursor complex of H-2 in the pocket between the B and N of crystalline KCAT. Ex-situ NMR showed that the transformation from KCAT to KCATH2 is quantitative and our results suggest that the hydrogen heterolysis process occurs via H-2 diffusion into the FLP crystal with a rate-limiting movement of H-2 from inactive positions to reactive sites.Peer reviewe

    Artificial Photosynthesis with Next Generation Molecular Catalysts

    No full text

    Biochemistry of Methyl-Coenzyme M Reductase

    Full text link
    Methanogens are masters of CO2 reduction. They conserve energy by coupling H2 oxidation to the reduction of CO2 to CH4, the primary constituent of natural gas. They also generate methane by the reduction of acetic acid, methanol, methane thiol, and methylamines. Methanogens produce 109 tons of methane per year and are the major source of the earth’s atmospheric methane. Reverse methanogenesis or anaerobic methane oxidation, which is catalyzed by methanotrophic archaea living in consortia among bacteria that can act as an electron acceptor, is responsible for annual oxidation of 108 tons of methane to CO2. This chapter briefly describes the overall process of methanogenesis and then describes the enzymatic mechanism of the nickel enzyme, methyl-CoM reductase (MCR), the key enzyme in methane synthesis and oxidation. MCR catalyzes the formation of methane and the heterodisulfide (CoBSSCoM) from methyl-coenzyme M (methyl-CoM) and coenzyme B (HSCoB). Uncovering the mechanistic and molecular details of MCR catalysis is critical since methane is an abundant and important fuel and is the second (to CO2) most prevalent greenhouse gas.</jats:p

    Modeling the Reaction of Fe Atoms with CCl<sub>4</sub>

    No full text
    The reaction of iron atoms with carbon tetrachloride (CCl4) in gas phase was studied using density functional theory. A recent experimental study (Parkinson, G. S.; Dohnálek, Z.; Smith, R. S.; Kay, B. D. J. Phys. Chem. C 2009, 113, 1818) of this reaction, performed by dropping Fe atoms into CCl4 deposited on a cold FeO(111) surface, demonstrates rich chemistry with several products (C2Cl4, C2Cl6, OCCl2, CO, FeCl2, and FeCl3) observed. The reactions of Fe with CCl4 was studied under three stoichiometries, one Fe with one CCl4, one Fe with two CCl4 molecules, and two Fe with one CCl4, modeling the stoichiometric, CCl4-rich, and Fe-rich environments of the experimental work. The electronic structure calculations give insight into the reactions leading to the experimentally observed products, in particular with regard to the formation of FeCl3 and other oxygen containing compounds that are not predicted from the simplest reactive model of successive Cl atom abstractions. They rather suggest that novel Fe−C−Cl containing species are important intermediates in these reactions. The intermediate complexes are formed in highly exothermic reactions, in agreement with the experimentally observed reactivity on the surface at low temperature (30 K). This initial survey of the reactivity of Fe with CCl4 identifies some potential reaction pathways that are important in the effort to use Fe nanoparticles to differentiate harmful pathways that lead to the formation of contaminants like chloroform (CHCl3) from harmless pathways that lead to products such as formate (HCO2−) or carbon oxides in water and soil
    corecore