47 research outputs found

    Luminescence of Aluminoborosilicate Glasses Doped with Gd3+ Ions

    Get PDF
    International audienceThe twophoton absorption that leads to the ultraviolet upconversion luminescence in the SiO2–Al2O3–B2O3–Na2O3–Zr2O : Gd3+ glass has been investigated. The inference has been made that no photon cascade emission takes place under excitation by monochromatic light corresponding to the maximum of the absorption band of the Cd3+ ion (204 nm). The mechanisms of concentration quenching and energy transfer between Cd3+ ions and optically active defects of the aluminoborosilicate glass have been discussed

    Maximizing lentiviral vector gene transfer in the CNS.

    Get PDF
    Gene transfer is a widely developed technique for studying and treating genetic diseases. However, the development of therapeutic strategies is challenging, due to the cellular and functional complexity of the central nervous system (CNS), its large size and restricted access. We explored two parameters for improving gene transfer efficacy and capacity for the selective targeting of subpopulations of cells with lentiviral vectors (LVs). We first developed a second-generation LV specifically targeting astrocytes for the efficient expression or silencing of genes of interest, and to better study the importance of cell subpopulations in neurological disorders. We then made use of the retrograde transport properties of a chimeric envelope to target brain circuits affected in CNS diseases and achieve a broad distribution. The combination of retrograde transport and specific tropism displayed by this LV provides opportunities for delivering therapeutic genes to specific cell populations and ensuring high levels of transduction in interconnected brain areas following local administration. This new LV and delivery strategy should be of greater therapeutic benefit and opens up new possibilities for the preclinical development of gene therapy for neurodegenerative diseases

    Novel homozygous missense mutation in GAN associated with Charcot-Marie-Tooth disease type 2 in a large consanguineous family from Israel.

    Get PDF
    BACKGROUND: CMT-2 is a clinically and genetically heterogeneous group of peripheral axonal neuropathies characterized by slowly progressive weakness and atrophy of distal limb muscles resulting from length-dependent motor and sensory neurodegeneration. Classical giant axonal neuropathy (GAN) is an autosomal recessively inherited progressive neurodegenerative disorder of the peripheral and central nervous systems, typically diagnosed in early childhood and resulting in death by the end of the third decade. Distinctive phenotypic features are the presence of "kinky" hair and long eyelashes. The genetic basis of the disease has been well established, with over 40 associated mutations identified in the gene GAN, encoding the BTB-KELCH protein gigaxonin, involved in intermediate filament regulation. METHODS: An Illumina Human CytoSNP-12 array followed by whole exome sequence analysis was used to identify the disease associated gene mutation in a large consanguineous family diagnosed with Charcot-Marie-Tooth disease type 2 (CMT-2) from which all but one affected member had straight hair. RESULTS: Here we report the identification of a novel GAN missense mutation underlying the CMT-2 phenotype observed in this family. Although milder forms of GAN, with and without the presence of kinky hair have been reported previously, a phenotype distinct from that was investigated in this study. All family members lacked common features of GAN, including ataxia, nystagmus, intellectual disability, seizures, and central nervous system involvement. CONCLUSIONS: Our findings broaden the spectrum of phenotypes associated with GAN mutations and emphasize a need to proceed with caution when providing families with diagnostic or prognostic information based on either clinical or genetic findings alone

    Comprehensive genetic dissection of wood properties in a widely-grown tropical tree: Eucalyptus

    Get PDF
    Background: Eucalyptus is an important genus in industrial plantations throughout the world and is grown for use as timber, pulp, paper and charcoal. Several breeding programmes have been launched worldwide to concomitantly improve growth performance and wood properties (WPs). In this study, an interspecific cross between Eucalyptus urophylla and E. grandis was used to identify major genomic regions (Quantitative Trait Loci, QTL) controlling the variability of WPs. Results: Linkage maps were generated for both parent species. A total of 117 QTLs were detected for a series of wood and end-use related traits, including chemical, technological, physical, mechanical and anatomical properties. The QTLs were mainly clustered into five linkage groups. In terms of distribution of QTL effects, our result agrees with the typical L-shape reported in most QTL studies, i.e. most WP QTLs had limited effects and only a few (13) had major effects (phenotypic variance explained > 15%). The co-locations of QTLs for different WPs as well as QTLs and candidate genes are discussed in terms of phenotypic correlations between traits, and of the function of the candidate genes. The major wood property QTL harbours a gene encoding a Cinnamoyl CoA reductase (CCR), a structural enzyme of the monolignol-specific biosynthesis pathway. Conclusions: Given the number of traits analysed, this study provides a comprehensive understanding of the genetic architecture of wood properties in this Eucalyptus full-sib pedigree. At the dawn of Eucalyptus genome sequence, it will provide a framework to identify the nature of genes underlying these important quantitative traits. (Résumé d'auteur

    Generation of oxygen deficient point defects in silica by gamma and beta irradiation

    No full text
    We report an experimental study of the effects of \u3b3 and \u3b2 irradiation on the generation of a point defect known as ODC(II) in various types of commercial silica (a-SiO2). The ODC(II) has been detected by means of photoluminescence (PL) spectroscopy measuring the PL band centered at 4.4 eV and excited at 5.0 eV associated to this defect. Our experiments show that ODC(II) are induced in all the investigated materials after irradiation at doses higher than 5 7 102 kGy. A good agreement is observed between the efficiencies of generation of ODC(II) under \u3b3 and \u3b2 irradiation, enabling a comprehensive study up to the dose of 5 7 106 kGy. Two different growth rates, one in the low and one in the high dose range, can be distinguished in all the samples examined, suggesting that the efficiency of generation of the ODC(II) depends on the dose but not on the kind of irradiation and on the dose rate. Furthermore a nonlinear dependence of the photoluminescence band amplitude on the dose D, through a power law of the kind D\u3b1 with \u3b1 < 1, has been observed in the low dose range in all the materials examine
    corecore