436 research outputs found

    Avant-propos

    Get PDF
    Résumé  37-2,167-86 Jørn Boisen: L'objectif de la présente étude est d'isoler un problème fondamental de l'esthétique et de la pensée de Kundera, à savoir comment explorer des thèmes philosophiques par des moyens romanesques ? Le soupçon du roman à thèse plane sur chaque roman qui contient une forte présence du penser. Pour réfuter cette accusation, le texte tente de dégager la relation très spécifique entre certaines propositions nietzschéennes, explicitement présentées et discutées dans L'insoutenable légèreté de l'être, et le destin d'un des personnages, la serveuse Térésa. L'analyse montre que le roman pensé de Kundera ne devient ni une défense ni une illustration des thèses philosophiques préétablies mais, au contraire, une exploration ambiguë et paradoxale de ce que deviennent les thèmes philosophiques dans « le monde de la vie »

    Microfabricated photoplastic cantilever with integrated photoplastic/carbon based piezoresistive strain sensor

    Get PDF
    L. Gammelgaard, P. A. Rasmussen, M. Calleja, P. Vettiger, and A. Boisen Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark We present an SU-8 micrometer sized cantilever strain sensor with an integrated piezoresistor made of a conductive composite of SU-8 polymer and carbon black particles. The composite has been developed using ultrasonic mixing. Cleanroom processing of the polymer composite has been investigated and it has been shown that it is possible to pattern the composite by standard UV photolithography. The composite material has been integrated into an SU-8 microcantilever and the polymer composite has been demonstrated to be piezoresistive with gauge factors around 15–20. Since SU-8 is much softer than silicon and the gauge factor of the composite material is relatively high, this polymer based strain sensor is more sensitive than a similar silicon based cantilever sensor.Peer reviewe

    Present and future of surface-enhanced Raman scattering

    Get PDF
    The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article

    Orientation of Pterin-6-Carboxylic Acid on Gold Capped Silicon Nanopillars Platforms: Surface Enhanced Raman Spectroscopy and Density Functional Theory Studies

    Get PDF
    The orientation of pterin-6-carboxylic acid on gold nanopillars was investigated by surface enhanced Raman spectroscopy and density functional theory methods. The experimentally vibrations from pterin-6-COOH free and attached to the Au surface display vibration features indicating chemical interaction of the pterin with the metal surface. The spectral feature evidenced that the pterin would adsorb on gold surface with a "lying down" configuration through the high intensity vibration of NH scissoring and rocking OH modes. The orientation study of pterins on gold nanopillars presented herein is believed to lead to new applications in biosensing field for detecting pterins of physiological importance

    Field-induced breakdown of the quantum Hall effect

    Full text link
    A numerical analysis is made of the breakdown of the quantum Hall effect caused by the Hall electric field in competition with disorder. It turns out that in the regime of dense impurities, in particular, the number of localized states decreases exponentially with the Hall field, with its dependence on the magnetic and electric field summarized in a simple scaling law. The physical picture underlying the scaling law is clarified. This intra-subband process, the competition of the Hall field with disorder, leads to critical breakdown fields of magnitude of a few hundred V/cm, consistent with observations, and accounts for their magnetic-field dependence \propto B^{3/2} observed experimentally. Some testable consequences of the scaling law are discussed.Comment: 7 pages, Revtex, 3 figures, to appear in Phys. Rev.
    corecore