12 research outputs found

    Induced folding in RNA recognition by Arabidopsis thaliana DCL1

    Get PDF
    DCL1 is the ribonuclease that carries out miRNA biogenesis in plants. The enzyme has two tandem double stranded RNA binding domains (dsRBDs) in its C-terminus. Here we show that the first of these domains binds precursor RNA fragments when isolated and cooperates with the second domain in the recognition of substrate RNA. Remarkably, despite showing RNA binding activity, this domain is intrinsically disordered. We found that it acquires a folded conformation when bound to its substrate, being the first report of a complete dsRBD folding upon binding. The free unfolded form shows tendency to adopt folded conformations, and goes through an unfolded bound state prior to the folding event. The significance of these results is discussed by comparison with the behavior of other dsRBDs.Fil: Suarez, Irina Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Burdisso, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Benoit Matthieu P. M. H.. Institut de Biologie Structurale Jean Pierre Ebel; FranciaFil: Boisbouvier, Jerome. Institut de Biologie Structurale Jean Pierre Ebel; FranciaFil: Rasia, Rodolfo Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentin

    Multiple RNA recognition patterns during microRNA biogenesis in plants

    Get PDF
    MicroRNAs (miRNAs) derive from longer precursors with fold-back structures. While animal miRNA precursors have homogenous structures, plant precursors comprise a collection of fold-backs with variable size and shape. Here, we design an approach to systematically analyze miRNA processing intermediates and characterize the biogenesis of most of the evolutionarily conserved miRNAs present in Arabidopsis thaliana. We found that plant miRNAs are processed by four mechanisms, depending on the sequential direction of the processing machinery and the number of cuts required to release the miRNA. Classification of the precursors according to their processing mechanism revealed specific structural determinants for each group. We found that the complexity of the miRNA processing pathways occurs in both ancient and evolutionarily young sequences and that members of the same family can be processed in different ways. We observed that different structural determinants compete for the processing machinery and that alternative miRNAs can be generated from a single precursor. The results provide an explanation for the structural diversity of miRNA precursors in plants and new insights toward the understanding of the biogenesis of small RNAs.Fil: Bologna, Nicolas Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Schapire, Arnaldo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Zhai, Jixian. University of Delaware. Department of Plant & Soil Sciences; Estados Unidos. Delaware Biotechnology Institute; Estados UnidosFil: Chorostecki, Uciel Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Boisbouvier, Jerome. Institut de Biologie Structurale Jean-Pierre Ebel; FranciaFil: Meyers, Blake C.. University of Delaware. Department of Plant & Soil Sciences; Estados Unidos. Delaware Biotechnology Institute; Estados UnidosFil: Palatnik, Javier Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentin

    NMR assignment of human HSP90 N-terminal domain bound to a long residence time resorcinol ligand

    No full text
    International audienceHSP90 is a major molecular chaperone that helps both folding and stabilization of various client proteins often implicated in growth control and cell survival such as kinases and transcription factors. However, among HSP90 clients are also found numerous oncoproteins and, through its assistance to them, HSP90 has consequently been reported as a promising anticancer target. Several ligand chemotypes, including resorcinol type ligands, were found to inhibit HSP90, most of them in an ATP competitive manner. Binding of some of these ligands modify significantly the NMR spectrum of the HSP90 ATP binding domain compared to the apo protein spectrum, hampering assignment transfer from the previously assigned human HSP90 apo state. Here we report the assignment of the 1HN, 15N, 13C', 13Cα, 13Cβ, 1Hmethyl, and 13Cmethyl chemical shifts of the 29 kDa HSP90 N-terminal domain bound to a long residence time resorcinol type inhibitor: 5-[4-(2-Fluoro-phenyl)-5-oxo-4,5-dihydro-1H-[1,2,4]triazol-3-yl]-N-furan-2-ylmethyl-2,4-dihydroxy-N-methyl-benzamide. 92% of the backbone resonances and 100% of the [1H, 13C]-resonances of Aβ, Mε, Tγ, Lδ2, Vγ2 and Iδ1 methyl groups were successfully assigned, including for the first time the assignment of the segment covering the nucleotide/drug binding site. Secondary structure predictions based on the NMR assignment reveal a structural rearrangement of HSP90 N-terminal domain upon ligand binding. The long residence time ligand induces the formation of a continuous helix covering the ligand binding site of HSP90 N-terminal domain accounting for the large differences observed in the NMR spectra between the apo and bound proteins

    The role of heat shock proteins in preventing amyloid toxicity

    No full text
    The oligomerization of monomeric proteins into large, elongated, β-sheet-rich fibril structures (amyloid), which results in toxicity to impacted cells, is highly correlated to increased age. The concomitant decrease of the quality control system, composed of chaperones, ubiquitin-proteasome system and autophagy-lysosomal pathway, has been shown to play an important role in disease development. In the last years an increasing number of studies has been published which focus on chaperones, modulators of protein conformational states, and their effects on preventing amyloid toxicity. Here, we give a comprehensive overview of the current understanding of chaperones and amyloidogenic proteins and summarize the advances made in elucidating the impact of these two classes of proteins on each other, whilst also highlighting challenges and remaining open questions. The focus of this review is on structural and mechanistic studies and its aim is to bring novices of this field “up to speed” by providing insight into all the relevant processes and presenting seminal structural and functional investigations

    The structure of the high-affinity nickel-binding site in the Ni,Zn-HypA•UreE2 complex

    No full text
    Abstract The maturation pathway for the nickel-dependent enzyme urease utilizes the protein UreE as a metallochaperone to supply Ni(II) ions. In Helicobacter pylori urease maturation also requires HypA and HypB, accessory proteins that are commonly associated with hydrogenase maturation. Herein we report on the characterization of a protein complex formed between HypA and the UreE2 dimer. Nuclear magnetic resonance (NMR) coupled with molecular modelling show that the protein complex apo, Zn-HypA•UreE2, forms between the rigorously conserved Met-His-Glu (MHE motif) Ni-binding N-terminal sequence of HypA and the two conserved His102A and His102B located at the dimer interface of UreE2. This complex forms in the absence of Ni(II) and is supported by extensive protein contacts that include the use of the C-terminal sequences of UreE2 to form additional strands of β-sheet with the Ni-binding domain of HypA. The Ni-binding properties of apo, Zn-HypA•UreE2 and the component proteins were investigated by isothermal titration calorimetry using a global fitting strategy that included all of the relevant equilibria, and show that the Ni,Zn-HypA•UreE2 complex contains a single Ni(II)-binding site with a sub-nanomolar KD. The structural features of this novel Ni(II) site were elucidated using proteins produced with specifically deuterated amino acids, protein point mutations, and the analyses of X-ray absorption spectroscopy, hyperfine shifted NMR features, as well as molecular modeling coupled with quantum-mechanical calculations. The results show that the complex contains a six-coordinate, high-spin Ni(II) site with ligands provided by both component proteins

    Structural Basis for the Inhibition of IAPP Fibril Formation by the Hsp60 Co-Chaperonin Prefoldin

    No full text
    Chaperones, as modulators of protein conformational states, are key cellular actors to prevent the accumulation of fibrillar aggregates. Here, we integrated kinetic investigations with structural studies to elucidate how the ubiquitous co-chaperonin prefoldin (PFD) inhibits diabetes associated islet amyloid polypeptide (IAPP) fibril formation. We demonstrated that both human and archaeal PFD interfere similarly with the IAPP fibril elongation and secondary nucleation pathways. Using archaeal prefoldin model, we combined NMR spectroscopy with EM to establish that the inhibition of fibril formation is mediated by the binding of prefoldins coiled- coil helices to the flexible IAPP N-terminal segment accessible on the fibril surface and fibril ends. AFM demonstrates that binding of prefoldin to IAPP leads to the formation of lower amounts of aggregates, composed of shorter fibrils, clustered together. Linking structural models with observed fibrillation inhibition processes opens new perspectives for understanding the interference between natural chaperones and formation of disease-associated amyloids

    Visualizing the transiently populated closed-state of human HSP90 ATP binding domain

    No full text
    HSP90 are abundant molecular chaperones, assisting the folding of several hundred client proteins, including substrates involved in tumor growth or neurodegenerative diseases. A complex set of large ATP-driven structural changes occurs during HSP90 functional cycle. However, the existence of such structural rearrangements in apo HSP90 has remained unclear. Here, we identified a metastable excited state in the isolated HSP90 ATP binding domain. We used solution NMR and mutagenesis to characterize structures of both ground and excited states. We demonstrated that in solution the HSP90 ATP binding domain transiently samples a functionally relevant ATP-lid closed state, distant by more than 30 Å from the ground state. NMR relaxation and molecular dynamics were combined to characterize the energy landscape corresponding to the transition between these interconverting states. The precise description of the dynamics and structures sampled by human HSP90 ATP binding domain is a paramount piece of information for the future design of new therapeutic ligand

    Structural basis for the inhibition of IAPP fibril formation by the co-chaperonin prefoldin.

    No full text
    Chaperones, as modulators of protein conformational states, are key cellular actors to prevent the accumulation of fibrillar aggregates. Here, we integrated kinetic investigations with structural studies to elucidate how the ubiquitous co-chaperonin prefoldin inhibits diabetes associated islet amyloid polypeptide (IAPP) fibril formation. We demonstrated that both human and archaeal prefoldin interfere similarly with the IAPP fibril elongation and secondary nucleation pathways. Using archaeal prefoldin model, we combined nuclear magnetic resonance spectroscopy with electron microscopy to establish that the inhibition of fibril formation is mediated by the binding of prefoldin's coiled-coil helices to the flexible IAPP N-terminal segment accessible on the fibril surface and fibril ends. Atomic force microscopy demonstrates that binding of prefoldin to IAPP leads to the formation of lower amounts of aggregates, composed of shorter fibrils, clustered together. Linking structural models with observed fibrillation inhibition processes opens perspectives for understanding the interference between natural chaperones and formation of disease-associated amyloids
    corecore