14,342 research outputs found
The Kantian Framework of Complementarity
A growing number of commentators have, in recent years, noted the important
affinities in the views of Immanuel Kant and Niels Bohr. While these
commentators are correct, the picture they present of the connections between
Bohr and Kant is painted in broad strokes; it is open to the criticism that
these affinities are merely superficial. In this essay, I provide a closer,
structural, analysis of both Bohr's and Kant's views that makes these
connections more explicit. In particular, I demonstrate the similarities
between Bohr's argument, on the one hand, that neither the wave nor the
particle description of atomic phenomena pick out an object in the ordinary
sense of the word, and Kant's requirement, on the other hand, that both
'mathematical' (having to do with magnitude) and 'dynamical' (having to do with
an object's interaction with other objects) principles must be applicable to
appearances in order for us to determine them as objects of experience. I argue
that Bohr's 'Complementarity interpretation' of quantum mechanics, which views
atomic objects as idealizations, and which licenses the repeal of the principle
of causality for the domain of atomic physics, is perfectly compatible with,
and indeed follows naturally from a broadly Kantian epistemological framework.Comment: Slight change between this version and previous in the wording of the
first paragraph of the section 'Complementarity
Color symmetrical superconductivity in a schematic nuclear quark model
In this note, a novel BCS-type formalism is constructed in the framework of a
schematic QCD inspired quark model, having in mind the description of color
symmetrical superconducting states. The physical properties of the BCS vacuum
(average numbers of quarks of different colors) remain unchanged under an
arbitrary color rotation. In the usual approach to color superconductivity, the
pairing correlations affect only the quasi-particle states of two colors, the
single particle states of the third color remaining unaffected by the pairing
correlations. In the theory of color symmetrical superconductivity here
proposed, the pairing correlations affect symmetrically the quasi-particle
states of the three colors and vanishing net color-charge is automatically
insured. It is found that the groundstate energy of the color symmetrical
sector of the Bonn model is well approximated by the average energy of the
color symmetrical superconducting state proposed here
The geometrical origin of the strain-twist coupling in double helices
The geometrical coupling between strain and twist in double helices is
investigated. Overwinding, where strain leads to further winding, is shown to
be a universal property for helices, which are stretched along their
longitudinal axis when the initial pitch angle is below the zero-twist angle
(39.4 deg). Unwinding occurs at larger pitch angles. The zero-twist angle is
the unique pitch angle at the point between overwinding and unwinding, and it
is independent of the mechanical properties of the double helix. This suggests
the existence of zero-twist structures, i.e. structures that display neither
overwinding, nor unwinding under strain. Estimates of the overwinding of DNA,
chromatin, and RNA are given.Comment: 8 pages, 4 figures; typos fixed; added ref. and acknowledgemen
Coulomb corrections to superallowed beta decay in nuclei
Corrections to the superallowed beta decay matrix elements are evaluated in
perturbation theory using the notion of the isovector monopole resonance. The
calculation avoids the separation into different contributions and thus
presents a consistent, systematic and more transparent approach. Explicit
expressions for the Coulomb correction as a function of mass number A, are
given.Comment: 10 page
Interpretation of Coulomb breakup of 31Ne in terms of deformation
The recent experimental data on Coulomb breakup of the nucleus Ne are
interpreted in terms of deformation. The measured large one-neutron removal
cross-section indicates that the ground state of Ne is either s- or
p-halo. The data can be most easily interpreted as the spin of the ground state
being 3/2 coming from either the Nilsson level [330 1/2] or [321 3/2]
depending on the neutron separation energy . However, the possibility of
1/2 coming from [200 1/2] is not excluded. It is suggested that if the
large ambiguity in the measured value of of Ne, 0.29 MeV,
can be reduced by an order of magnitude, say to be 100 keV, one may get a
clear picture of the spin-parity of the halo ground state.Comment: 8 pages, 4 figure
The intruder feature of 31Mg and the coexistence of many particle and many hole states
The low-lying level structure of has been investigated by the
antisymmetrized molecular dynamics (AMD) plus generator coordinate method (GCM)
with the Gogny D1S force. It is shown that the N=20 magic number is broken and
the ground state has the pure neutron configuration. The coexistence of
many particle and many hole states at very low excitation energy is discussed
- …
