188 research outputs found

    The distribution of pond snail communities across a landscape: separating out the influence of spatial position from local habitat quality for ponds in south-east Northumberland, UK

    Get PDF
    Ponds support a rich biodiversity because the heterogeneity of individual ponds creates, at the landscape scale, a diversity of habitats for wildlife. The distribution of pond animals and plants will be influenced by both the local conditions within a pond and the spatial distribution of ponds across the landscape. Separating out the local from the spatial is difficult because the two are often linked. Pond snails are likely to be affected by both local conditions, e.g. water hardness, and spatial patterns, e.g. distance between ponds, but studies of snail communities struggle distinguishing between the two. In this study, communities of snails were recorded from 52 ponds in a biogeographically coherent landscape in north-east England. The distribution of snail communities was compared to local environments characterised by the macrophyte communities within each pond and to the spatial pattern of ponds throughout the landscape. Mantel tests were used to partial out the local versus the landscape respective influences. Snail communities became more similar in ponds that were closer together and in ponds with similar macrophyte communities as both the local and the landscape scale were important for this group of animals. Data were collected from several types of ponds, including those created on nature reserves specifically for wildlife, old field ponds (at least 150 years old) primarily created for watering livestock and subsidence ponds outside protected areas or amongst coastal dunes. No one pond type supported all the species. Larger, deeper ponds on nature reserves had the highest numbers of species within individual ponds but shallow, temporary sites on farm land supported a distinct temporary water fauna. The conservation of pond snails in this region requires a diversity of pond types rather than one idealised type and ponds scattered throughout the area at a variety of sites, not just concentrated on nature reserves

    Genetic Signature of Rapid IHHNV (Infectious Hypodermal and Hematopoietic Necrosis Virus) Expansion in Wild Penaeus Shrimp Populations

    Get PDF
    Infectious hypodermal and hematopoietic necrosis virus (IHHNV) is a widely distributed single-stranded DNA parvovirus that has been responsible for major losses in wild and farmed penaeid shrimp populations on the northwestern Pacific coast of Mexico since the early 1990's. IHHNV has been considered a slow-evolving, stable virus because shrimp populations in this region have recovered to pre-epizootic levels, and limited nucleotide variation has been found in a small number of IHHNV isolates studied from this region. To gain insight into IHHNV evolutionary and population dynamics, we analyzed IHHNV capsid protein gene sequences from 89 Penaeus shrimp, along with 14 previously published sequences. Using Bayesian coalescent approaches, we calculated a mean rate of nucleotide substitution for IHHNV that was unexpectedly high (1.39×10−4 substitutions/site/year) and comparable to that reported for RNA viruses. We found more genetic diversity than previously reported for IHHNV isolates and highly significant subdivision among the viral populations in Mexican waters. Past changes in effective number of infections that we infer from Bayesian skyline plots closely correspond to IHHNV epizootiological historical records. Given the high evolutionary rate and the observed regional isolation of IHHNV in shrimp populations in the Gulf of California, we suggest regular monitoring of wild and farmed shrimp and restriction of shrimp movement as preventative measures for future viral outbreaks

    Connectivity within and among a Network of Temperate Marine Reserves

    Get PDF
    Networks of marine reserves are increasingly being promoted as a means of conserving marine biodiversity. One consideration in designing systems of marine reserves is the maintenance of connectivity to ensure the long-term persistence and resilience of populations. Knowledge of connectivity, however, is frequently lacking during marine reserve design and establishment. We characterise patterns of genetic connectivity of 3 key species of habitat-forming macroalgae across an established network of temperate marine reserves on the east coast of Australia and the implications for adaptive management and marine reserve design. Connectivity varied greatly among species. Connectivity was high for the subtidal macroalgae Ecklonia radiata and Phyllospora comosa and neither species showed any clear patterns of genetic structuring with geographic distance within or among marine parks. In contrast, connectivity was low for the intertidal, Hormosira banksii, and there was a strong pattern of isolation by distance. Coastal topography and latitude influenced small scale patterns of genetic structure. These results suggest that some species are well served by the current system of marine reserves in place along this temperate coast but it may be warranted to revisit protection of intertidal habitats to ensure the long-term persistence of important habitat-forming macroalgae. Adaptively managing marine reserve design to maintain connectivity may ensure the long-term persistence and resilience of marine habitats and the biodiversity they support

    Genetic Structure Among 50 Species of the Northeastern Pacific Rocky Intertidal Community

    Get PDF
    Comparing many species' population genetic patterns across the same seascape can identify species with different levels of structure, and suggest hypotheses about the processes that cause such variation for species in the same ecosystem. This comparative approach helps focus on geographic barriers and selective or demographic processes that define genetic connectivity on an ecosystem scale, the understanding of which is particularly important for large-scale management efforts. Moreover, a multispecies dataset has great statistical advantages over single-species studies, lending explanatory power in an effort to uncover the mechanisms driving population structure. Here, we analyze a 50-species dataset of Pacific nearshore invertebrates with the aim of discovering the most influential structuring factors along the Pacific coast of North America. We collected cytochrome c oxidase I (COI) mtDNA data from populations of 34 species of marine invertebrates sampled coarsely at four coastal locations in California, Oregon, and Alaska, and added published data from 16 additional species. All nine species with non-pelagic development have strong genetic structure. For the 41 species with pelagic development, 13 show significant genetic differentiation, nine of which show striking FST levels of 0.1–0.6. Finer scale geographic investigations show unexpected regional patterns of genetic change near Cape Mendocino in northern California for five of the six species tested. The region between Oregon and Alaska is a second focus of intraspecific genetic change, showing differentiation in half the species tested. Across regions, strong genetic subdivision occurs more often than expected in mid-to-high intertidal species, a result that may reflect reduced gene flow due to natural selection along coastal environmental gradients. Finally, the results highlight the importance of making primary research accessible to policymakers, as unexpected barriers to marine dispersal break the coast into separate demographic zones that may require their own management plans

    Learned vocal variation is associated with abrupt cryptic genetic change in a parrot species complex

    Get PDF
    <div><p>Contact zones between subspecies or closely related species offer valuable insights into speciation processes. A typical feature of such zones is the presence of clinal variation in multiple traits. The nature of these traits and the concordance among clines are expected to influence whether and how quickly speciation will proceed. Learned signals, such as vocalizations in species having vocal learning (e.g. humans, many birds, bats and cetaceans), can exhibit rapid change and may accelerate reproductive isolation between populations. Therefore, particularly strong concordance among clines in learned signals and population genetic structure may be expected, even among continuous populations in the early stages of speciation. However, empirical evidence for this pattern is often limited because differences in vocalisations between populations are driven by habitat differences or have evolved in allopatry. We tested for this pattern in a unique system where we may be able to separate effects of habitat and evolutionary history. We studied geographic variation in the vocalizations of the crimson rosella (<em>Platycercus elegans</em>) parrot species complex. Parrots are well known for their life-long vocal learning and cognitive abilities. We analysed contact calls across a <em>ca</em> 1300 km transect encompassing populations that differed in neutral genetic markers and plumage colour. We found steep clinal changes in two acoustic variables (fundamental frequency and peak frequency position). The positions of the two clines in vocal traits were concordant with a steep cline in microsatellite-based genetic variation, but were discordant with the steep clines in mtDNA, plumage and habitat. Our study provides new evidence that vocal variation, in a species with vocal learning, can coincide with areas of restricted gene flow across geographically continuous populations. Our results suggest that traits that evolve culturally can be strongly associated with reduced gene flow between populations, and therefore may promote speciation, even in the absence of other barriers.</p> </div

    Extensive population genetic structure in the giraffe

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (<it>Giraffa camelopardalis</it>) are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation.</p> <p>Results</p> <p>By analyzing mitochondrial DNA sequences and nuclear microsatellite loci, we show that there are at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Some of these lineages appear to be maintained in the absence of contemporary barriers to gene flow, possibly by differences in reproductive timing or pelage-based assortative mating, suggesting that populations usually recognized as subspecies have a long history of reproductive isolation. Further, five of the six putative lineages also contain genetically discrete populations, yielding at least 11 genetically distinct populations.</p> <p>Conclusion</p> <p>Such extreme genetic subdivision within a large vertebrate with high dispersal capabilities is unprecedented and exceeds that of any other large African mammal. Our results have significant implications for giraffe conservation, and imply separate <it>in situ </it>and <it>ex situ </it>management, not only of pelage morphs, but also of local populations.</p

    Transcriptome Analysis and SNP Development Can Resolve Population Differentiation of Streblospio benedicti, a Developmentally Dimorphic Marine Annelid

    Get PDF
    Next-generation sequencing technology is now frequently being used to develop genomic tools for non-model organisms, which are generally important for advancing studies of evolutionary ecology. One such species, the marine annelid Streblospio benedicti, is an ideal system to study the evolutionary consequences of larval life history mode because the species displays a rare offspring dimorphism termed poecilogony, where females can produce either many small offspring or a few large ones. To further develop S. benedicti as a model system for studies of life history evolution, we apply 454 sequencing to characterize the transcriptome for embryos, larvae, and juveniles of this species, for which no genomic resources are currently available. Here we performed a de novo alignment of 336,715 reads generated by a quarter GS-FLX (Roche 454) run, which produced 7,222 contigs. We developed a novel approach for evaluating the site frequency spectrum across the transcriptome to identify potential signatures of selection. We also developed 84 novel single nucleotide polymorphism (SNP) markers for this species that are used to distinguish coastal populations of S. benedicti. We validated the SNPs by genotyping individuals of different developmental modes using the BeadXPress Golden Gate assay (Illumina). This allowed us to evaluate markers that may be associated with life-history mode

    Population Structure and Gene Flow of the Yellow Anaconda (Eunectes notaeus) in Northern Argentina

    Get PDF
    Yellow anacondas (Eunectes notaeus) are large, semiaquatic boid snakes found in wetland systems in South America. These snakes are commercially harvested under a sustainable management plan in Argentina, so information regarding population structuring can be helpful for determination of management units. We evaluated genetic structure and migration using partial sequences from the mitochondrial control region and mitochondrial genes cyt-b and ND4 for 183 samples collected within northern Argentina. A group of landscape features and environmental variables including several treatments of temperature and precipitation were explored as potential drivers of observed genetic patterns. We found significant population structure between most putative population comparisons and bidirectional but asymmetric migration in several cases. The configuration of rivers and wetlands was found to be significantly associated with yellow anaconda population structure (IBD), and important for gene flow, although genetic distances were not significantly correlated with the environmental variables used here. More in-depth analyses of environmental data may be needed to fully understand the importance of environmental conditions on population structure and migration. These analyses indicate that our putative populations are demographically distinct and should be treated as such in Argentina's management plan for the harvesting of yellow anacondas

    Mitochondrial DNA Regionalism and Historical Demography in the Extant Populations of Chirocephalus kerkyrensis (Branchiopoda: Anostraca)

    Get PDF
    Background: Mediterranean temporary water bodies are important reservoirs of biodiversity and host a unique assemblage of diapausing aquatic invertebrates. These environments are currently vanishing because of increasing human pressure. Chirocephalus kerkyrensis is a fairy shrimp typical of temporary water bodies in Mediterranean plain forests and has undergone a substantial decline in number of populations in recent years due to habitat loss. We assessed patterns of genetic connectivity and phylogeographic history in the seven extant populations of the species from Albania, Corfu Is. (Greece), Southern and Central Italy. Methodology/Principal Findings: We analyzed sequence variation at two mitochondrial DNA genes (Cytochrome Oxidase I and 16s rRNA) in all the known populations of C. kerkyrensis. We used multiple phylogenetic, phylogeographic and coalescence-based approaches to assess connectivity and historical demography across the whole distribution range of the species. C. kerkyrensis is genetically subdivided into three main mitochondrial lineages; two of them are geographically localized (Corfu Is. and Central Italy) and one encompasses a wide geographic area (Albania and Southern Italy). Most of the detected genetic variation (<81%) is apportioned among the aforementioned lineages. Conclusions/Significance: Multiple analyses of mismatch distributions consistently supported both past demographic and spatial expansions with the former predating the latter; demographic expansions were consistently placed during interglacial warm phases of the Pleistocene while spatial expansions were restricted to cold periods. Coalescence methods revealed a scenario of past isolation with low levels of gene flow in line with what is already known for other co-distributed fairy shrimps and suggest drift as the prevailing force in promoting local divergence. We recommend that these evolutionary trajectories should be taken in proper consideration in any effort aimed at protecting Mediterranean temporary water bodies
    • …
    corecore