186 research outputs found
Die Marktordnungen f�r Obst, Gem�se und Bananen
Agricultural and Food Policy, Demand and Price Analysis, International Relations/Trade,
Collaboration, Clean Water Act Residual Designation Authority, and Collective Permitting: A Case Study of Long Creek
Water quality degradation in urban watersheds is a pervasive problem, and many urban waterways fail to attain water quality standards set pursuant to the Clean Water Act. Finding mechanisms to close this gap has proven difficult. As traditionally implemented, none of the Clean Water Act’s primary mechanisms for addressing urban water quality has offered consistent and effective solutions. This article discusses an innovative effort to develop an alternative approach. To address degradation of Long Creek, a small urban stream in southern Maine, regulators used the residual designation authority created by Section 402(p) of the Clean Water Act to substantially expand the number of landowners required to obtain stormwater permits. Concurrently, regulators, local governments, local businesses, and other participants in a collaborative planning process developed a collective permitting approach, which should substantially reduce the economic cost of fulfilling the new permit obligations. The initiative holds promise as a model for restoration of other urban watersheds
A rare desmoid tumor of the shoulder – excision, implantation of brachytherapy applicators and wound closure by pedicle musculus latissimus dorsi flap
Desmoid tumors are non-metastatic mesenchymal tumors with an aggressive local growth. Depending on the anatomic location, morbidity varies. We report of a patient with a desmoid tumor of the right shoulder which was treated in our department by surgical excision, plastic-surgical wound closure and postoperative adjuvant radiation
Heterobimetallic Au(I)/Y(III) single chain nanoparticles as recyclable homogenous catalysts
Heterobimetallic single chain nanoparticles were synthesized and applied as recyclable homogenous catalysts. A terpolymer containing two orthogonal ligand moieties, phosphines and carboxylates, was obtained via nitroxide-mediated polymerization. Single chain nanoparticle (SCNP) formation is induced by selective metal complexation of Y(III) by the carboxylate functions, while Au(I) is selectively coordinated to phosphine moieties. In contrast to previous work, the two functionalities, SCNP folding and formation of a catalytic center, were distributed over two metals, which critically increases the flexibility of the system. The formation of Au(I)/Y(III)-SCNPs is evidenced by size exclusion chromatography, dynamic light scattering, nuclear magnetic resonance (1H, 31P{1H}) and infrared spectroscopy. Importantly, the activity of the Au(I)/Y(III)-SCNPs as homogenous, yet recyclable catalyst, bridging the gap between homogenous and heterogeneous catalysis, was demonstrated using the hydroamination of aminoalkynes as an example
Earthworm effects on the incorporation of litter C and N into soil organic matter in a sugar maple forest
To examine the mechanisms of earthworm effects on forest soil C and N, we double-labeled leaf litter with C-13 and N-15, applied it to sugar maple forest plots with and without earthworms, and traced isotopes into soil pools. The experimental design included forest plots with different earthworm community composition (dominated by Lumbricus terrestris or L. rubellus). Soil carbon pools were 37% lower in earthworm-invaded plots largely because of the elimination of the forest floor horizons, and mineral soil C:N was lower in earthworm plots despite the mixing of high C:N organic matter into soil by earthworms. Litter disappearance over the first winter-spring was highest in the L. terrestris (T) plots, but during the warm season, rapid loss of litter was observed in both L. rubellus (R) and T plots. After two years, 22.0% +/- 5.4% of C-13 released from litter was recovered in soil with no significant differences among plots. Total recovery of added C-13 (decaying litter plus soil) was much higher in no-worm (NW) plots (61-68%) than in R and T plots (20-29%) as much of the litter remained in the former whereas it had disappeared in the latter. Much higher percentage recovery of N-15 than C-13 was observed, with significantly lower values for T than R and NW plots. Higher overwinter earthworm activity in T plots contributed to lower soil N recovery. In earthworm-invaded plots isotope enrichment was highest in macroaggregates and microaggregates whereas in NW plots silt plus clay fractions were most enriched. The net effect of litter mixing and priming of recalcitrant soil organic matter (SOM), stabilization of SOM in soil aggregates, and alteration of the soil microbial community by earthworm activity results in loss of SOM and lowering of the C:N ratio. We suggest that earthworm stoichiometry plays a fundamental role in regulating C and N dynamics of forest SOM
Active Immunization Against the Vascular Endothelial Growth Factor Receptor flk1 Inhibits Tumor Angiogenesis and Metastasis
The vascular endothelial growth factor (VEGF) receptor fetal liver kinase 1 (flk1; VEGFR-2, KDR) is an endothelial cell–specific receptor tyrosine kinase that mediates physiological and pathological angiogenesis. We hypothesized that an active immunotherapy approach targeting flk1 may inhibit tumor angiogenesis and metastasis. To test this hypothesis, we first evaluated whether immune responses to flk1 could be elicited in mice by immunization with dendritic cells pulsed with a soluble flk1 protein (DC-flk1). This immunization generated flk1-specific neutralizing antibody and CD8+ cytotoxic T cell responses, breaking tolerance to self-flk1 antigen. Tumor-induced angiogenesis was suppressed in immunized mice as measured in an alginate bead assay. Development of pulmonary metastases was strongly inhibited in DC-flk1–immunized mice challenged with B16 melanoma or Lewis lung carcinoma cells. DC-flk1 immunization also significantly prolonged the survival of mice challenged with Lewis lung tumors. Thus, an active immunization strategy that targets an angiogenesis-related antigen on endothelium can inhibit angiogenesis and may be a useful approach for treating angiogenesis-related diseases
Recommended from our members
Inhibition of the Vascular Endothelial Cell (VE)-Specific Adhesion Molecule VE-Cadherin Blocks Gonadotropin-Dependent Folliculogenesis and Corpus Luteum Formation and Angiogenesis
Although it has been previously demonstrated that administration of anti-vascular endothelial growth factor (VEGF) receptor-2 antibodies to hypophysectomized (Hx) mice during gonadotropin-stimulated folliculogenesis and luteogenesis inhibits angiogenesis in the developing follicle and corpus luteum (CL), it is unclear which of the many components of VEGF inhibition are important for the inhibitory effects on ovarian angiogenesis. To examine whether ovarian angiogenesis can be more specifically targeted, we administered an antibody to VE-cadherin (VE-C), an interendothelial adhesion molecule, to Hx mice during gonadotropin stimulation. In tumor models and in vivo and in vitro assays, the anti-VE-C antibody E4G10 has been shown to specifically inhibit angiogenesis, but VE-C has yet to be inhibited in the context of ovarian angiogenesis. In addition to studying the effect on neovascularization in the follicular and luteal phases, we also examined the effect of E4G10 on established vessels of the CL of pregnancy. The results demonstrate that E4G10 specifically blocks neovascularization in the follicular and luteal phases, causing an inhibition of preovulatory follicle and CL development, a decrease in the vascular area, and an inhibition of function demonstrated by reduced hormone levels. However, when administered during pregnancy, unlike anti-VEGF receptor-2 antibody, E4G10 is unable to cause disruption of the established vessels of the mature CL. These data demonstrate that E4G10 causes a specific inhibition of neovascularization in the ovary without destabilizing preexisting vasculature
Recommended from our members
The Vascular Endothelial Growth Factor (VEGF)/VEGF Receptor 2 Pathway Is Critical for Blood Vessel Survival in Corpora Lutea of Pregnancy in the Rodent
The vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR-2) pathway regulates proliferation, survival, and permeability of vasculature. This pathway is active during the formation of a corpus luteum, a highly vascularized, endocrine organ with a short life span during the nonpregnant state. In the pregnant state, the life span of corpora lutea is much longer because they play a critical role in supporting pregnancy development. We hypothesized that the VEGF/VEGFR-2 pathway plays a critical role in regulating angiogenic events in the corpora lutea of pregnancy. Injection of the neutralizing anti-VEGFR-2 antibody DC101 (ImClone Systems, Inc., New York, NY) on embryonic d 3.5 (preimplantation) or 6.5 (postimplantation) disrupts function of the corpora lutea of pregnancy in CD1 mice, as evidenced by a decrease in organ size, regression of luteal vessels, and a fall in progesterone secretion within 24 h postinjection. Inhibition of the VEGFR-2 caused removal of endothelial cells, mostly through endothelial cell detachment from the vascular basement membrane. Luteal steroid-producing epithelial cells were eliminated through apoptosis secondary to vasculature becoming dysfunctional. Disruption of luteal function caused arrest of embryonic development. The effect of antibody is specific to the ovary, because pregnancy progresses normally in ovariectomized, progesterone-replaced animals treated with anti-VEGFR-2 antibody. Embryonic blood vessels were not affected directly by the antibody, because it did not reach the embryo. Administration of an antibody against VE-cadherin (E4G10), which specifically blocks endothelial proliferation, did not disrupt luteal function and pregnancy development. Thus, VEGFR-2-mediated endothelial cell signals are critical to maintain functionality of luteal blood vessels during pregnancy. Potential clinical applications of inhibitors of the VEGF/VEGFR-2 pathway include emergency contraception and medical treatment of ectopic and abnormal intrauterine pregnancies
50 Years Geophysical Institute Karlsruhe, 1964 to 2014 - Expectations and Surprises
Die Festschrift anlässlich des 50. Geburtstags des Geophysikalischen Instituts in 2014 wurde hauptsächlich von Herrn Dr. Claus Prodehl zusammengestellt. Die einzelnen Beiträge stammen von ehemaligen und aktuellen GPI-Mitarbeitern und Mitarbeiterinnen
- …