25 research outputs found

    Distribution Regression: Theory and Application

    Get PDF
    In this dissertation we discuss the problem of distribution regression. That is, the problem of utilizing distributional covariates in predicting scalar outcomes. We first show an application in neuroimaging that relates functional connectivity measurements viewed as statistical distributions to outcomes. We consider 47 primary progressive aphasia (PPA) patients with various levels of language ability. These patients were randomly assigned to two treatment arms, tDCS (transcranial direct-current stimulation and language therapy) vs sham (language therapy only), in a clinical trial. We analyze the effect of direct stimulation on functional connectivity by treating connectivity measures as samples from individual distributions. As such, we estimate the density of correlations among the regions of interest (ROIs) and study the difference in the density post-intervention between treatment arms. This distributional approach gives the ability to drastically reduces the number of multiple comparisons compared to classic edge-wise analysis. In addition, it allows for the investigation of the impact of functional connectivity on the outcomes where the connectivity is not geometrically localized. We next propose and study the theoretical properties of a related functional expectation model, where we show that optimal information rate bounds can be achieved by a distributional Gaussian process regression, without estimating any individual densities. The model can perform closed form posterior inference via a Gaussian process prior on the regression function. We also propose a low-rank approximation method to accelerate the inference in real applications. In the next chapter, we attached a less related work that reviews state-of-art algorithms to accelerate the convergence of fixed-point iteration problems. Fixed point iteration algorithms have a wide range of applications in statistics and data science. We propose a modified restart Nesterov accelerated gradient algorithm that can also be used for black-box acceleration of general fixed-point iteration problems and show that works well in practice via investigation under six different tasks

    Improving Medical Dialogue Generation with Abstract Meaning Representations

    Get PDF
    Medical Dialogue Generation serves a critical role in telemedicine by facilitating the dissemination of medical expertise to patients. Existing studies focus on incorporating textual representations, which have limited their ability to represent the semantics of text, such as ignoring important medical entities. To enhance the model's understanding of the textual semantics and the medical knowledge including entities and relations, we introduce the use of Abstract Meaning Representations (AMR) to construct graphical representations that delineate the roles of language constituents and medical entities within the dialogues. In this paper, We propose a novel framework that models dialogues between patients and healthcare professionals using AMR graphs, where the neural networks incorporate textual and graphical knowledge with a dual attention mechanism. Experimental results show that our framework outperforms strong baseline models in medical dialogue generation, demonstrating the effectiveness of AMR graphs in enhancing the representations of medical knowledge and logical relationships. Furthermore, to support future research in this domain, we provide the corresponding source code at https://github.com/Bernard-Yang/MedDiaAMR

    Improving Medical Dialogue Generation with Abstract Meaning Representations

    Full text link
    Medical Dialogue Generation serves a critical role in telemedicine by facilitating the dissemination of medical expertise to patients. Existing studies focus on incorporating textual representations, which have limited their ability to represent the semantics of text, such as ignoring important medical entities. To enhance the model's understanding of the textual semantics and the medical knowledge including entities and relations, we introduce the use of Abstract Meaning Representations (AMR) to construct graphical representations that delineate the roles of language constituents and medical entities within the dialogues. In this paper, We propose a novel framework that models dialogues between patients and healthcare professionals using AMR graphs, where the neural networks incorporate textual and graphical knowledge with a dual attention mechanism. Experimental results show that our framework outperforms strong baseline models in medical dialogue generation, demonstrating the effectiveness of AMR graphs in enhancing the representations of medical knowledge and logical relationships. Furthermore, to support future research in this domain, we provide the corresponding source code at https://github.com/Bernard-Yang/MedDiaAMR.Comment: Submitted to ICASSP 202

    Effective Distillation of Table-based Reasoning Ability from LLMs

    Full text link
    Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of natural language processing tasks. However, their remarkable parameter size and their impressive high requirement of computing resources pose challenges for their practical deployment. Recent research has revealed that specific capabilities of LLMs, such as numerical reasoning, can be transferred to smaller models through distillation. Some studies explore the potential of leveraging LLMs to perform table-based reasoning. Nevertheless, prior to our work, there has been no investigation into the prospect of specialising table reasoning skills in smaller models specifically tailored for table-to-text generation tasks. In this paper, we propose a novel table-based reasoning distillation, with the aim of distilling distilling LLMs into tailored, smaller models specifically designed for table-based reasoning task. Experimental results have shown that a 0.22 billion parameter model (Flan-T5-base) fine-tuned using distilled data, not only achieves a significant improvement compared to traditionally fine-tuned baselines but also surpasses specific LLMs like gpt-3.5-turbo on the scientific table-to-text generation dataset (SciGen). The code and data are released in https://github.com/Bernard-Yang/TableDistill

    Effective Distillation of Table-based Reasoning Ability from LLMs

    Get PDF
    Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of natural language processing tasks. However, their enormous parameter size and extremely high requirements for compute power pose challenges for their practical deployment. Recent research has revealed that specific capabilities of LLMs, such as numerical reasoning, can be transferred to smaller models through distillation. Some studies explore the potential of leveraging LLMs to perform table-based reasoning. However, there has been no prior work focusing on table reasoning skills in smaller models specifically tailored for scientific table-to-text generation tasks. In this paper, we propose a novel table-based reasoning distillation approach, with the aim of distilling LLMs into tailored smaller models. Our experimental results have shown that a 220 million parameter model (Flan-T5-base) fine-tuned using distilled data, not only achieves a significant improvement compared to traditionally fine-tuned baselines, but also surpasses specific LLMs on a scientific table-to-text generation dataset. Our code is available at https://github.com/Bernard-Yang/DistillTableCoT

    Density-on-Density Regression

    Full text link
    In this study, a density-on-density regression model is introduced, where the association between densities is elucidated via a warping function. The proposed model has the advantage of a being straightforward demonstration of how one density transforms into another. Using the Riemannian representation of density functions, which is the square-root function (or half density), the model is defined in the correspondingly constructed Riemannian manifold. To estimate the warping function, it is proposed to minimize the average Hellinger distance, which is equivalent to minimizing the average Fisher-Rao distance between densities. An optimization algorithm is introduced by estimating the smooth monotone transformation of the warping function. Asymptotic properties of the proposed estimator are discussed. Simulation studies demonstrate the superior performance of the proposed approach over competing approaches in predicting outcome density functions. Applying to a proteomic-imaging study from the Alzheimer's Disease Neuroimaging Initiative, the proposed approach illustrates the connection between the distribution of protein abundance in the cerebrospinal fluid and the distribution of brain regional volume. Discrepancies among cognitive normal subjects, patients with mild cognitive impairment, and Alzheimer's disease (AD) are identified and the findings are in line with existing knowledge about AD

    Neural Correlates of Syntactic Comprehension: A Longitudinal Study

    Get PDF
    Broca’s area is frequently implicated in sentence comprehension but its specific role is debated. Most lesion studies have investigated deficits at the chronic stage. We aimed (1) to use acute imaging to predict which left hemisphere stroke patients will recover sentence comprehension; and (2) to better understand the role of Broca’s area in sentence comprehension by investigating acute deficits prior to functional reorganization. We assessed comprehension of canonical and noncanonical sentences in 15 patients with left hemisphere stroke at acute and chronic stages. LASSO regression was used to conduct lesion symptom mapping analyses. Patients with more severe word-level comprehension deficits and a greater proportion of damage to supramarginal gyrus and superior longitudinal fasciculus were likely to experience acute deficits prior to functional reorganization. Broca’s area was only implicated in chronic deficits. We propose that when temporoparietal regions are damaged, intact Broca’s area can support syntactic processing after functional reorganization occurs

    Chromosome-level genome assembly of a high-altitude-adapted frog (Rana kukunoris) from the Tibetan plateau provides insight into amphibian genome evolution and adaptation

    Get PDF
    Background The high-altitude-adapted frog Rana kukunoris, occurring on the Tibetan plateau, is an excellent model to study life history evolution and adaptation to harsh high-altitude environments. However, genomic resources for this species are still underdeveloped constraining attempts to investigate the underpinnings of adaptation. Results The R. kukunoris genome was assembled to a size of 4.83 Gb and the contig N50 was 1.80 Mb. The 6555 contigs were clustered and ordered into 12 pseudo-chromosomes covering similar to 93.07% of the assembled genome. In total, 32,304 genes were functionally annotated. Synteny analysis between the genomes of R. kukunoris and a low latitude species Rana temporaria showed a high degree of chromosome level synteny with one fusion event between chr11 and chr13 forming pseudo-chromosome 11 in R. kukunoris. Characterization of features of the R. kukunoris genome identified that 61.5% consisted of transposable elements and expansions of gene families related to cell nucleus structure and taste sense were identified. Ninety-five single-copy orthologous genes were identified as being under positive selection and had functions associated with the positive regulation of proteins in the catabolic process and negative regulation of developmental growth. These gene family expansions and positively selected genes indicate regions for further interrogation to understand adaptation to high altitude. Conclusions Here, we reported a high-quality chromosome-level genome assembly of a high-altitude amphibian species using a combination of Illumina, PacBio and Hi-C sequencing technologies. This genome assembly provides a valuable resource for subsequent research on R. kukunoris genomics and amphibian genome evolution in general.Peer reviewe

    Evaluating causal psychological models: A study of language theories of autism using a large sample

    Get PDF
    We used a large convenience sample (n = 22,223) from the Simons Powering Autism Research (SPARK) dataset to evaluate causal, explanatory theories of core autism symptoms. In particular, the data-items collected supported the testing of theories that posited altered language abilities as cause of social withdrawal, as well as alternative theories that competed with these language theories. Our results using this large dataset converge with the evolution of the field in the decades since these theories were first proposed, namely supporting primary social withdrawal (in some cases of autism) as a cause of altered language development, rather than vice versa.To accomplish the above empiric goals, we used a highly theory-constrained approach, one which differs from current data-driven modeling trends but is coherent with a very recent resurgence in theory-driven psychology. In addition to careful explication and formalization of theoretical accounts, we propose three principles for future work of this type: specification, quantification, and integration. Specification refers to constraining models with pre-existing data, from both outside and within autism research, with more elaborate models and more veridical measures, and with longitudinal data collection. Quantification refers to using continuous measures of both psychological causes and effects, as well as weighted graphs. This approach avoids “universality and uniqueness” tests that hold that a single cognitive difference could be responsible for a heterogeneous and complex behavioral phenotype. Integration of multiple explanatory paths within a single model helps the field examine for multiple contributors to a single behavioral feature or to multiple behavioral features. It also allows integration of explanatory theories across multiple current-day diagnoses and as well as typical development
    corecore