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Abstract
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of natural
language processing tasks. However, their enormous parameter size and extremely high requirements for compute
power pose challenges for their practical deployment. Recent research has revealed that specific capabilities
of LLMs, such as numerical reasoning, can be transferred to smaller models through distillation. Some studies
explore the potential of leveraging LLMs to perform table-based reasoning. However, there has been no prior work
focusing on table reasoning skills in smaller models specifically tailored for scientific table-to-text generation tasks.
In this paper, we propose a novel table-based reasoning distillation approach, with the aim of distilling LLMs into
tailored smaller models. Our experimental results have shown that a 220 million parameter model (Flan-T5-base)
fine-tuned using distilled data, not only achieves a significant improvement compared to traditionally fine-tuned
baselines, but also surpasses specific LLMs on a scientific table-to-text generation dataset. Our code is available at
https://github.com/Bernard-Yang/DistillTableCoT.

Keywords: table-based reasoning, distillation, table-to-text generation

1. Introduction

Tables, as a ubiquitous and pivotal means of knowl-
edge storage, have been receiving increasing atten-
tion in contemporary research. Tabular data, when
combined with textual data, provides a valuable
and complementary source of information. The in-
tersection of tabular and textual information consti-
tutes a well-established problem within the domain
of Natural Language Processing (NLP), with im-
pacts spanning a diverse spectrum of downstream
tasks, including table question answering (Pasupat
and Liang, 2015; Cho et al., 2019; Nan et al., 2022),
and table fact checking (Chen et al., 2020c; Gupta
et al., 2020; Aly et al., 2021; Lu et al., 2023).

Conventional approaches to table-based reason-
ing (Pasupat and Liang, 2015; Zhong et al., 2017;
Yu et al., 2018) have predominantly relied on the
synthesis of executable languages such as SQL
or SPARQL to facilitate information retrieval from
tables. However, these symbolic languages often
entail rigid assumptions regarding table structures,
rendering them incapable of capturing the seman-
tics embedded in textual segments within the table.
A holistic comprehension of web tables necessi-
tates the understanding of structured reasoning
alongside textual reasoning. To this end, the emer-
gence of table-based pre-trained models (Herzig
et al., 2020; Liu et al., 2021; Jiang et al., 2022; Cai
et al., 2022) has underscored the efficacy of pre-

training models on both textual and tabular data for
augmenting reasoning capabilities. This improve-
ment stems from the extensive knowledge obtained
from the large-scale crawling or synthesising of tab-
ular and textual data.

In recent years, the advent of Large Language
Models (LLMs) (Brown et al., 2020; Chowdhery
et al., 2022; Touvron et al., 2023) has revolutionised
the landscape of NLP, ushering in a new era marked
by their remarkable performance demonstrated
across a multitude of controllable text generation
tasks (Tang et al., 2022; Yang et al., 2023; Zhao
et al., 2023a; Tang et al., 2023b). Large Language
Models (LLMs) implicitly capture the intricate inter-
relationships among tokens within input sequences,
enabling them to adeptly comprehend the hetero-
geneous features present, regardless of their struc-
tural format, such as graph representations, tabu-
lar data, or sequential patterns(Huang et al., 2022;
Goldsack et al., 2023; Tang et al., 2023a). These
models leverage vast corpora of textual data and
undergo extensive pre-training, exhibiting an ex-
ceptional capacity to tackle intricate mathematical
and commonsense reasoning tasks, often within
the context of few-shot and zero-shot learning sce-
narios (Wei et al., 2022; Wang et al., 2022; Droz-
dov et al., 2022; Loakman et al., 2023; Zhou et al.,
2023).

Drawing inspiration from these groundbreaking
developments, a range of studies (Chen, 2023; Ye
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Dataset BERT
(dev)

BERT
(test)

BioBERT
(test)

BioBERT
(test)

MedNLI 79.56 77.49 82.15 79.04

MNLI (M) 83.52 - 81.23 -

SNLI (S) 90.39 - 89.10 -

M → MedNLI 80.14 78.62 82.72 80.80

S → MedNLI 80.28 78.19 83.29 81.29

M → S → MedNLI 80.43 78.12 83.29 80.30

S → M → MedNLI 81.72 77.98 83.51 82.63

MedNLI 79.13 77.07 83.87 79.95

S → M → MedNLI
(expanded)

82.15 79.95 83.08 81.85

Distilled Reasoning:
Looking at the "S → M → MedNLI" row, we can see that the performance of S → 
M → MedNLI is higher on BioBERT compared to BERT.
Distilled Description:
"BioBERT performs better than BERT on the S → M → MedNLI task.“

T5-CoT: 
BioBERT on S M MedNLI has a higher score than that of BERT.

T5-traditional: 
We can see that biobert outperforms bert by a large margin on all the 
datasets 

Input  Table:

Tables

Descriptions

LLM

Reasoning

Pipeline

Teach

Figure 1: The overview of the distillation pipeline
and example data. The pipeline includes using
LLMs to generate table-based reasoning and de-
scriptions given the input table.

et al., 2023; Cheng et al., 2023; Gemmell and Dal-
ton, 2023; Lu et al., 2023) have emerged to highlight
the competitive performance of LLMs in compari-
son to state-of-the-art fine-tuned models in the do-
main of table reasoning tasks (e.g., table question
answering and table fact-checking). For instance,
Zhao et al. (2023b) delved into the potential of em-
ploying LLMs augmented with Chain-of-Thought
(CoT) techniques in the LogicNLG dataset (Chen
et al., 2020c) for table-to-text generation tasks. De-
spite significant advancements, prior research has
not focused on the challenging domain of more
complex reasoning-aware scientific table-to-text
generation task using LLMs. Moreover, the sub-
stantial parameter count and demanding computa-
tional requirements present obstacles to their fea-
sible implementation. Therefore, distilling LLMs’
intrinsic table-based reasoning capabilities into
more lightweight alternatives is a more efficient and
resource-friendly approach.

In this paper, we investigate the capabilities of
LLMs in the task of reasoning-aware scientific table-
to-text generation, and propose a two-step distilla-
tion approach to transfer the table-based reasoning
ability of LLMs into smaller models. The nature of
the complex scientific table-to-text generation task
requires the LLMs to comprehensively grasp the
provided tables and engage in arithmetic reason-
ing encompassing both tabular and textual data,
rather than merely converting table contents into
superficial descriptions. Our distillation pipeline is
shown in Figure 1, which includes using LLMs to
generate table-based reasoning content and de-
scriptions given the input table. We conduct our
experiments on the SciGen dataset (Moosavi et al.,

2021b), the first scientific table-to-text dataset and
is more challenging than other standard table-to-
text benchmarks, such as Wiseman et al. (2017),
Parikh et al. (2020), and Chen et al. (2020a), as
it contains more numerical reasoning. We also
provide an example in Figure 1, in which the de-
scription generated by T5-CoT is better than that of
T5-traditional, as T5-CoT is fine-tune with the rea-
soning and descriptions distilled from LLMs. This
is because the example reasoning describes the
“S → M → Med” row, which enables the model to
focus on that specific row of the table in further
fine-tuning the student models.

Our contributions can be summarised as follows:

• We explore the potential of tackling the task of
reasoning-aware scientific table-to-text gener-
ation using LLMs.

• We propose a two-stage distillation framework
containing data generation and fine-tuning
stages. In the data generation stage, we utilise
LLMs to generate table-based reasoning and
factually consistent statements, which could
describe the table correctly based on the input
table, employing a one-shot Chain-of-Thought
(CoT) methodology. Subsequently, in the fine-
tuning phase, we employ the distilled CoT data
generated by LLMs to imbue smaller models
with table reasoning proficiency.

• We present a range of experimental results
that underscore that fine-tuning smaller mod-
els with table-based reasoning data distilled
from LLMs leads to significant performance en-
hancements compared to baseline models in
the context of scientific table-to-text generation
tasks.

• We demonstrate that, distillation empowers
student models with as few as 220 million pa-
rameters (e.g., only 0.1% the size of teacher
model) to outperform the 175 billion-parameter
teacher model in certain metrics.

2. Related Work

2.1. Table-based Reasoning
Table-based reasoning tasks require the ability
to reason over both natural language and struc-
tured tables. Traditional table-based reasoning in-
volves employing semantic parsing to execute com-
mands on tables, with benchmarks including Wik-
iTableQuestions (Pasupat and Liang, 2015), Wik-
iSQL (Zhong et al., 2017), and Spider (Yu et al.,
2018). These models are designed to produce
SQL for interacting with tables. However, these lan-
guages impose strict criteria on tables and make it



so that these methods cannot understand the se-
mantics of text segments. Some works proposed
to learn joint representations by pre-training on ta-
ble and text data (Herzig et al., 2020; Liu et al.,
2021; Zhao et al., 2022). Through pre-training the
model on extensive synthetic data, they are able
to achieve desirable performance on table related
tasks. Recent works (Chen, 2023; Ye et al., 2023;
Nan et al., 2023) have shown the ability of LLMs in
table reasoning tasks through in-context learning.
Lu et al. (2023) use LLMs to perform reasoning in
the task of scientific table fact-checking. This task
requires compositional reasoning using scientific
tables as evidence. BINDER (Cheng et al., 2023)
uses Codex to synthesise SQL queries to execute
logical forms against tables in a question answering
task.

2.2. Chain-of-thought Reasoning
Chain of thought (CoT) prompting encourages
LLMs to break down a reasoning task into a se-
ries of intermediate steps, therefore enhancing rea-
soning abilities across various tasks (Wei et al.,
2022; Shao et al., 2024). With a few CoT reasoning
examples, LLMs can achieve state-of-the-art per-
formance on complex arithmetic reasoning tasks.
Self-consistency CoT (Wang et al., 2023) involves
sampling multiple CoTs and selecting the most con-
sistent one by beam searching. Kojima et al. (2022)
propose zero-shot CoT by first generating CoT tem-
plates and producing the final answer with LLMs in
a zero-shot setting.

2.3. Knowledge Distillation
Distillation has demonstrated its effectiveness in
transferring valuable capabilities from a larger
model to a smaller one (Hinton et al., 2015; Sanh
et al., 2019; Zeng et al., 2022). Recent works have
shown that synthetic data generated by the teacher
model can effectively transfer the specialised abili-
ties, such as numerical reasoning, to the student
model. Chung et al. (2022) use manually gener-
ated CoT data to fine-tune a FLAN-based version of
PaLM (Chowdhery et al., 2022). Fu et al. (2023) em-
ploy enriched chain-of-thought data to specialise
a smaller model. Ho et al. (2023) proposes di-
verse CoT approach by sampling different reason-
ing outputs from a large model to then fine-tune a
smaller model. Magister et al. (2023) use a two-
step pipeline for transferring the reasoning capabil-
ities of large models to smaller models. Hsieh et al.
(2023) extract rationales from LLMs and integrated
such data in the smaller model instruction tuning
framework. Zhu et al. (2023) use LLMs to distill
the programs, injecting reasoning ability into small
models. We extend the above ideas into the table-
based reasoning task, specifically in the scientific

table-to-text generation domain, in which the gen-
erated CoT data leads to improved table reasoning
performance.

3. Methodology

Our proposed framework is illustrated in Figure 2,
which consists of two steps: synthesising data from
LLMs and fine-tuning student models with the dis-
tilled data. The primary purpose of the first stage is
to generate table-based reasoning and descriptions
with LLMs given the input tables through CoT. In the
second stage, the table-based reasoning ability is
transferred into smaller models by fine-tuning with
the distilled data from the LLMs.

3.1. Task Definition
We define the task as follows: The input serialised
tabular data is denoted as T . In addition, the table-
based reasoning data distilled from LLMs is de-
noted as R = r1, r2, ..., rn, where ri is the token
of reasoning. The primary goal of this task is to
generate a description Y = y1, y2, ..., ym, where
yi is the token of the description and the model
functions by simulating the conditional probability
distribution P (Y |T,R). The generated description
should be factually consistent with the given table,
and contain reasoning over the table.

3.2. Table-based Reasoning Generation
The data synthesis process of our proposed
method is illustrated in the upper part of the right-
hand side of Figure 2, which is based on in-context
learning (Brown et al., 2020), an emergent ability of
LLMs (Wei et al., 2022). Different from traditional
fine-tuning, in-context learning enables the LLMs to
make predictions based on the input context where
only a few examples are demonstrated, without the
need for parameter updating.

We utilise a large teacher LLM, gpt-3.5-
turbo, to generate table-based reasoning through
CoT. We formulate the data generation process as
follows: given a input serialised table T , we prompt
the LLMs with the one-shot CoT demonstration ex-
ample to generate a reasoning R and a descrip-
tion Y which is factually consistent with the input
table. Specifically, the demonstration examples
C = (T,R, Y ) is a table, reasoning, and descrip-
tion triplet, where the R and Y are hand-crafted.
Finally, we can generate data as follows:

Ri, Yi =LLMs(C, Ti) (1)

where we prepend the demonstrated example C
as the prefix to the input table Ti. Then the LLM
will follow the instruction and learn the pattern from
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Figure 2: The overview of our framework. For synthesising data from LLMs, we provide table examples
to LLMs, and use it to generate reasonings and descriptions. Then, the generated descriptions are verified
by LLMs and the false reasoning and description pairs are removed. For fine-tuning smaller models,
we fine-tune small models with generated reasoning and description, which inject the reasoning ability
into smaller models.

the example to generate corresponding reasoning
Ri and description Yi.
Diverse Reasoning. The table-to-text task en-
ables the model to produce varied descriptions by
focusing on different table regions or performing
various reasoning operations, provided that the gen-
erated descriptions are factually consistent with the
table (Zhao et al., 2023b). To maximise the rea-
soning ability distilled from LLMs, we employ the
diverse reasoning approach (Ho et al., 2023; Zhu
et al., 2023; Zhao et al., 2023b) to generate two
different reasoning examples and descriptions for
a given scientific table. We do not generate more
reasoning-description pairs for each table because
the maximal context limit of the LLMs and the av-
erage length of the tables and descriptions in the
SciGen dataset is larger than in other table-to-text
datasets. Specifically, the data generation process
is shown as follows: given a context C and table
Ti, the LLMs are required to generate two pairs of
reasoning and description.

{(R1, Y1), (R2, Y2)} =LLMs(C, Ti) (2)

Data Filtering. The synthesised table-based CoT
data may contain incorrect samples due to the hal-
lucination problem of generative models (Zhu et al.,
2023). Therefore, we need to filter the wrongly gen-
erated CoT data. For filtering, we follow Madaan
et al. (2023) and employ the Self-Refine method.
To be specific, when generating a new set of data
(Ri, Yi) given Ti, we ask the LLMs to verify whether
the generated description Yi is consistent with the
input table Ti. We can filter out incorrect samples
to refine our generated CoT data. The verification
and filtering is crucial as the high quality training
data should improve performance. Finally, we get
16,858 validated examples as the training data.

3.3. Fine-tuning Small Models
Once we obtain the generated table-based reason-
ing data, we use them to fine-tune smaller models
and inject the reasoning ability into them. As for
the choice of smaller models, we select T5 (Raf-
fel et al., 2019) and Flan-T5 (Chung et al., 2022).
This is because recent works (Fu et al., 2023; Zhu
et al., 2023; Magister et al., 2023) have revealed
that these models can attain a remarkable numeri-
cal reasoning ability when trained with CoT data in
the task of complex mathematical problem solving.
We fine-tune the smaller model with the generated
table-based reasoning data. Specifically, we con-
catenate the table T with table-based reasoning R,
which are split by an added special token “<CoT>”.
The resulting input sequence takes the following
form: “T <CoT> R”. We provide an example in
Figure 3. Therefore, the description Y is gener-
ated based on both the input serialised table T and
table-based reasoning R with the following loss
function:

L = − 1

N

N∑
n=1

logP (Y | T,R) (3)

where N denotes the size of the training data, and
L is the cross entropy loss.

4. Experiments

4.1. Dataset
We conduct scientific table-to-text generation on
the SciGen dataset (Moosavi et al., 2021a). The
statistics of the data are shown in Table 1. It con-
sists of three different settings: few-shot, medium



and large. The train/val/test sets of medium set-
ting are split into sizes of 13,607/3,452/1,038. The
large setting is split into 39,969/12,129/1,038. We
choose the medium and large settings to conduct
the experiments. This is because the few-shot set-
ting only contains 200 examples of training data
and is insufficient for fine-tuning.

4.2. Baselines
We follow Moosavi et al. (2021a) and select T5 (Raf-
fel et al., 2019) and BART (Lewis et al., 2020) as the
student model baselines. For the BART baseline,
we use BART-large with 0.40B parameters. For
the T5 model, we use T5-base and T5-large with
0.22B, and 0.77B parameters, respectively. For
the teacher models, we choose text-davinci-
002 and gpt-3.5-turbo as the baseline. For
the one-shot prompt setting, we follow previous
works (Chen, 2023; Zhao et al., 2023b), which
prepend one demonstration example to the input
table. We compare with two variants of the teacher
models, called 1-shot direct and 1-shot CoT. For
the prompt formulation of 1-shot direct, we follow
the setting of Moosavi et al. (2021a) to linearise the
table and concatenate it with the gold description
as a demonstration. As for the prompt of 1-shot
CoT, we prepend the input table to two hand-crafted
table-based reasonings and descriptions.

Setting Text Train Val Test
Few-shot 116 200 100 1,038
Medium 124 13,607 3,452 1,038
Large 133 39,969 12,129 1,038

Table 1: SciGen dataset statistics. Text indicates
the average length in words of descriptions.

4.3. Experimental Settings
To use the above text-to-text generation baselines,
we follow the setting in Moosavi et al. (2021a) and
convert tables into the text sequences. To preserve
and help the model better learn the table structure,
we add four special tokens to specify the beginning
of rows, cells, table captions, and CoT reasoning
with tokens “<R>”, “<C>”, “<CAP>”, “<CoT>”, re-
spectively. Figure 3 shows an original table from
a scientific paper (Nam et al., 2019) and its cor-
responding linearised input representation. The
generated reasoning and description from LLMs
are also provided.

4.4. Automatic Evaluation Metric
We utilise a wide range of automatic evaluation met-
rics from various levels to assess the performance
of the model.

Surface-level. Following Moosavi et al. (2021a),
we choose METEOR (Banerjee and Lavie,
2005), BERTScore (Zhang et al., 2020), and
BLEURT (Sellam et al., 2020) to measure the sur-
face similarity of the generated statements to the
gold references.

METEOR aligns the output text with the reference
text and computes sentence-level similarity scores
based on the alignments.

BERTScore employs BERT embeddings, which
aligns words in both the generated and reference
sentences using cosine similarity. It calculates pre-
cision, recall, and F1 scores.

BLEURT is a learned evaluation metric based on
BERT. It is first pre-trained on synthetic examples
and then fine-tuned on human judgments for the
task of machine translation.

However, Moosavi et al. (2021a) stated that
these metrics are not sufficient as the value range
is quite low (except for BERTScore). In addition, in
some cases, the incorrect description scores higher
than the correct ones.
Faithfulness-level. Recent works (Moosavi et al.,
2021a; Liu et al., 2022a) have pointed out that
the above surface-level metrics cannot measure
the factual correctness of the generated descrip-
tions given the corresponding tables. The SciGen
task requires the model to generate statements
which contain numerical reasoning over table val-
ues. In addition, the generated statements might
cover a different table region from the gold refer-
ence. Therefore, we add two faithfulness-level met-
rics (to assess whether the generated sentence
is grounded in the input table), TAPAS-Acc and
TAPEX-Acc (Liu et al., 2022a) to evaluate the
factual consistency and fidelity, which have been
widely used for table-to-text evaluation.

TAPAS-Acc fine-tunes TAPAS (Herzig et al.,
2020) on the TabFact dataset (Chen et al., 2020b)
and achieves 81% test accuracy.

TAPEX-Acc use TAPEX (Liu et al., 2022b) which
is fine-tuned on the TabFact dataset and achieves
84% test accuracy. Previous works (Liu et al.,
2022a; Zhao et al., 2023b) stated that TAPAS-
Acc is overly positive about the predictions, while
TAPEX-Acc is more reliable for the evaluation of the
faithfulness of generated sentences. Both above
reference-free metrics score the generated descrip-
tions as 0 for refuted and 1 for entailed given the
corresponding tables.

5. Results

In this section, we evaluate both the performance
of teacher LLMs and the fine-tuned smaller mod-
els on the scientific table-to-text task. We conduct
automatic evaluation on both Surface-level and



<R> <C> [BOLD] Dataset <C> [BOLD] BERT dev <C> [BOLD] BERT test <C> [BOLD] 
BioBERT dev <C> [BOLD] BioBERT test <R> <C> MedNLI <C> 79.56 <C> 77.49 <C> 
82.15 <C> 79.04 <R> <C> MNLI (M) <C> 83.52 <C> - <C> 81.23 <C> - <R> <C> SNLI 
(S) <C> 90.39 <C> - <C> 89.10 <C> - <R> <C> M → MedNLI <C> 80.14 <C> [BOLD] 
78.62 <C> 82.72 <C> 80.80 <R> <C> S → MedNLI <C> 80.28 <C> 78.19 <C> 83.29 <C> 
81.29 <R> <C> M → S → MedNLI <C> 80.43 <C> 78.12 <C> 83.29 <C> 80.30 <R> <C> S 
→ M → MedNLI <C> [BOLD] 81.72 <C> 77.98 <C> [BOLD] 83.51 <C> [BOLD] 82.63 
<R> <C> MedNLI (expanded) <C> 79.13 <C> 77.07 <C> [BOLD] 83.87 <C> 79.95 <R> 
<C> S → M → MedNLI (expanded) <C> [BOLD] 82.15 <C> [BOLD] 79.95 <C> 83.08 <C> 
[BOLD] 81.85 <CAP> Table 4: All experiment results of transfer learning and abbreviation 
expansion (top-2 scores marked as bold). <COT> Looking at the "S → M → MedNLI" row, 
we can see that the performance of S → M → MedNLI is higher on BioBERT compared to 
BERT.

Input Representation:Table:

Distilled Reasoning:
Looking at the "S → M → MedNLI" row, we can see that the 
performance of S → M → MedNLI is higher on BioBERT 
compared to BERT.

Distilled Description:
BioBERT performs better than 
BERT on the S → M → 
MedNLI task.

T5-CoT: 
BioBERT on S M MedNLI  has a higher 
score than that of BERT.

Teach

LLM

Figure 3: Sample table from Nam et al. (2019) with its corresponding input representation. The reasoning
and description are generated from LLMs for further fine-tuning smaller models.

Models #Params Faithfulness-level Surface-level
TAPAS-Acc TAPEX-Acc Meteor BERTScore BLEURT

Teacher Model
text-davinci-002 (1-shot direct) 175B 66.43 64.84 0.08 0.82 -0.97
gpt-3.5-turbo (1-shot direct) 175B 72.34 70.48 0.09 0.85 -0.91
text-davinci-002 (1-shot CoT) 175B 75.35 77.89 0.09 0.82 -0.94
gpt-3.5-turbo (1-shot CoT) 175B 82.53 84.99 0.09 0.83 -0.96
Medium Setting
BART-large 0.40B 57.45 58.41 0.23 0.84 -0.72
T5-base 0.22B 53.27 52.45 0.15 0.82 -0.89
T5-large 0.77B 56.32 54.78 0.17 0.83 -0.77
Flan-T5-base 0.22B 54.78 56.25 0.16 0.84 -0.82
Flan-T5-large 0.77B 58.91 57.29 0.18 0.84 -0.80
Large Setting
BART-large 0.40B 59.69 61.38 0.15 0.82 -0.89
T5-base 0.22B 55.32 53.76 0.15 0.82 -0.85
T5-large 0.77B 58.21 56.32 0.18 0.83 -0.79
Flan-T5-base 0.22B 56.41 55.37 0.16 0.82 -0.86
Flan-T5-large 0.77B 59.81 58.34 0.17 0.83 -0.83
CoT fine tuning
T5-base-CoT 0.22B 78.16 82.30 0.08 0.83 -0.89
T5-large-CoT 0.77B 80.62 81.97 0.07 0.82 -0.89
Flan-T5-base-CoT 0.22B 78.72 82.75 0.08 0.82 -0.89
Flan-T5-large-CoT 0.77B 79.05 82.53 0.06 0.83 -0.89

Table 2: Performance on the SciGen test set. Medium and large settings denote the setting of the datasets
used for training. For the teacher model, direct refers to direct prompt without CoT. CoT fine tuning refers
to fine-tuning smaller models with generated CoT data from teacher models.

Faithfulness-level metrics. The overall results are
shown in Table 2. The comparison of Faithfulness-
level metrics between teacher models and student
models the large are presented in the Figure 5 and
Figure 6.

5.1. Performance of LLMs
Our experiments include two in-context learn-
ing methods, Direct Prompt and CoT Prompt.
We select text-davinci-002 and gpt-3.5-
turbo to conduct experiments on the SciGen
dataset. As shown in Table 2, on surface-level

metrics, both Direct Prompt and CoT Prompt
cannot achieve the best performance, except
for gpt-3.5-turbo (1-shot direct) achiev-
ing the best performance on BERTScore. How-
ever, the surface-level metrics are unable to ac-
curately measure the faithfulness and accuracy of
the models’ generated outputs. In terms of the
faithfulness-level metrics, text-davinci-002
(1-shot direct) can achieve over 64% accu-
racy and gpt-3.5-turbo (1-shot direct)
can achieve over 70% accuracy on both TAPAS-
Acc and TAPEX-Acc, which outperform the tradi-



Default TAPAS-Acc TAPEX-Acc CoT (Ours) TAPAS-Acc TAPEX-Acc
T5-base 55.32 53.76 T5-base 78.16 82.30
Flan-T5-base 56.41 55.37 Flan-T5-base 78.72 82.75
T5-large 58.21 56.32 T5-large 80.62 81.97
Flan-T5-large 59.81 58.34 Flan-T5-large 79.05 82.53

Table 3: Smaller model performance on the test set of the SciGen dataset. Models fine-tuned with CoT
data generally perform better than the traditional fine-tuned ones (with a minimum of 20% improvement).

Figure 4: Ablation study of smaller models on the SciGen dataset. Compared with models using standard
fine-tuning, T5 and Flan-T5 fine-tuned with CoT data achieve significant improvements on both TAPAS-Acc
and TAPEX-Acc.

tional fine-tuned baseline models (i.e. BART and
T5). When combined the direct prompt with CoT
reasoning, the accuracy of both text-davinci-
002 (1-shot CoT) and gpt-3.5-turbo (1-
shot CoT) increases by around 10% on both met-
rics.

5.2. Performance of Fine-tuned Smaller
Model

Regarding the surface-level metrics, the smaller
models, whether fine-tuned with CoT data or not,
consistently exhibit a narrow range of low values,
with absolute values falling within the 0-1 Likert
scale range. The experimental results are consis-
tent with the statements in SciGen’s paper (Moosavi
et al., 2021a) that surface-level metrics are not suf-
ficient to reflect models’ abilities on this complex
task.
Small models with traditional fine-tuning do not
perform well on faithfulness-level metrics. In
terms of the smaller models fine-tuned without CoT
data, BART-large fine-tuned on the medium dataset
achieves the best on surface-level metrics. How-
ever, in terms of the faithfulness-level, all the BART
and T5 baselines only achieve an accuracy slightly
higher than random chance. We further investi-
gate the impact of dataset size, ranging from the

Figure 5: The TAPAS-Acc of the teacher models
(LLMs) and small models on the SciGen dataset.
All the small models fine-tuned with CoT data can
surpass LLMs with direct prompting.

Medium Setting to the Large Setting. Although the
size of the Large Setting dataset is three times that
of the Medium Setting, performance improvements
are not as significant (i.e., only around 2% increase
on the faithfulness-level metrics). However, for the
surface-level metrics, models that are trained with
the Medium datasets achieve better overall perfor-
mance, especially in METEOR and BLEURT.
Small models fine-tuned with CoT data achieve
a significant performance improvement. On
the other hand, the T5 and Flan-T5 models with



Figure 6: The TAPEX-Acc of teacher models and
small models on the SciGen dataset. The trend
is similar to TAPAS-Acc, with the performance of
small models fine-tuned with CoT data only un-
derperforming when compared to LLMs with CoT
prompting.

CoT fine-tuning can achieve the best overall perfor-
mance on the faithfulness-level metrics among all
the small models. All the performances of CoT fine-
tuning models are on par with the teacher model
(i.e., gpt-3.5-turbo (1-shot CoT) on the
faithfulness-level metrics. For instance, T5-large-
CoT and Flan-T5-base-CoT achieve the highest
TAPAS-Acc (80.62%) and TAPEX-Acc (82.75%),
and only underperform the teacher model with the
best performance by a margin of 2%. These results
indicate that fine-tuning with CoT data distilled from
LLMs can transfer the table-based reasoning ability
into smaller models.
Larger model size does not guarantee the per-
formance improvement when fine-tuned with-
out CoT data. Furthermore, our experiments also
investigate the impact of the model size for CoT fine-
tuning, ranging from the base to the large variant.
While it is intuitive to expect performance improve-
ments with larger models, the experimental results
on TAPEX-Acc metric reveal that models with larger
parameter counts, such as T5-large and Flan-T5-
large, do not consistently outperform their smaller
counterparts, T5-base and Flan-T5-base. However,
regarding TAPAS-Acc, the performance improve-
ment is consistent, with the model size increasing
from base (0.22B) to large (0.77B).

5.3. Comparison between Teacher and
Student Models

We also compare the performance on faithfulness-
level metrics (TAPAS-Acc and TAPEX-Acc) of both
the teacher model (LLMs) and student models in
Figure 5 and Figure 6. For the teacher model, gpt-
3.5-turbo (1-shot direct) outperforms all
smaller baseline models (smaller models fine-tuned
without CoT data) and text-davinci-002 (1-
shot direct). In addition, gpt-3.5-turbo

(1-shot CoT) achieves the best performances
on both TAPAS-Acc and TAPEX-Acc metrics among
both teacher and student models. As for smaller
models, both T5 and Flan-T5 can only achieve
around 55% accuracy on both faithfulness-level
metrics without being fine-tuned with CoT data.
However, these smaller models can be injected
with reasoning ability after fine-tuning with CoT
data, achieving approximately 80% accuracy on
both metrics.

Figure 7: Evaluation of generated data of train and
test sets of SciGen dataset. Correct refers to the
data with statements verified correctly by LLMs.

5.4. Ablation Study
The ablation study of fine-tuning with CoT data are
shown in both Table 3 and Figure 4. For both T5
and Flan-T5 models, we can observe the signifi-
cant increases after fine-tuning with with CoT data
in both TAPAS-Acc and TAPEX-Acc on the SciGen
table-to-text generation task. For TAPAS-Acc met-
ric, T5 and Flan-T5 base (0.22B) and large (0.77B)
models can only achieve over 55% accuracy. How-
ever, when fine-tuning with table-based CoT data
from LLMs, there is a significant accuracy increase
(over 20%) observed. For instance, the 55% accu-
racy of T5-large with standard fine-tuning can be
improved to 80% after being fine-tuned with CoT
data. As for TAPEX-Acc metric, a similar trend
can be observed, where the overall improvement in
accuracy is over 25%. For example, the most signif-
icant improvement can be observed in the T5-base
model, which is from 53% (traditional fine-tune) to
82% (CoT fine-tune).

5.5. Generated Data Analysis
The LLMs we used in this paper contributed to-
wards the synthesis of high-quality table-based
CoT data. However, during the generation process,
there are certain falsely generated data due to the



hallucinatory nature of LLMs. Therefore, we con-
duct a comprehensive analysis of the samples gen-
erated by LLMs. The evaluation results are shown
in Figure 7, gpt-3.5-turbo achieves an accu-
racy of 85% on the training set, where the gener-
ated descriptions are verified as correct. As for the
test set of SciGen, the accuracy is over 90%, and
with less than 10% of the samples regarded as in-
correct. Regarding the table-to-text generation task,
both the generated reasoning and descriptions re-
veal high-quality coherence and consistency given
the input table.

6. Conclusion

In this paper, we introduce a two-stage distillation
framework that distills table-based CoT data from
LLMs. Our experiments illustrate that this method is
able to effectively transfer table reasoning abilities
to smaller models in the scientific table-to-text gen-
eration task. The performance improvement can
even outperform certain teacher LLMs (e.g., gpt-
3.5-turbo). Our proposed method achieves com-
prehensive superiority in this specific task while
requiring less data and smaller models.
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