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Abstract

In this dissertation we discuss the problem of distribution regression. That is,

the problem of utilizing distributional covariates in predicting scalar outcomes.

We first show an application in neuroimaging that relates functional connectivity

measurements viewed as statistical distributions to outcomes. We consider 47

primary progressive aphasia (PPA) patients with various levels of language ability.

These patients were randomly assigned to two treatment arms, tDCS (transcranial

direct-current stimulation and language therapy) vs sham (language therapy only),

in a clinical trial. We analyze the effect of direct stimulation on functional connec-

tivity by treating connectivity measures as samples from individual distributions.

As such, we estimate the density of correlations among the regions of interest

(ROIs) and study the difference in the density post-intervention between treat-

ment arms. This distributional approach gives the ability to drastically reduces

the number of multiple comparisons compared to classic edge-wise analysis. In

addition, it allows for the investigation of the impact of functional connectivity on

the outcomes where the connectivity is not geometrically localized.

We next propose and study the theoretical properties of a related functional

expectation model, where we show that optimal information rate bounds can be

achieved by a distributional Gaussian process regression, without estimating any

individual densities. The model can perform closed form posterior inference via a
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Gaussian process prior on the regression function. We also propose a low-rank

approximation method to accelerate the inference in real applications.

In the next chapter, we attached a less related work that reviews state-of-art

algorithms to accelerate the convergence of fixed-point iteration problems. Fixed

point iteration algorithms have a wide range of applications in statistics and data

science. We propose a modified restart Nesterov accelerated gradient algorithm

that can also be used for black-box acceleration of general fixed-point iteration

problems and show that works well in practice via investigation under six different

tasks.
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Chapter 1

Introduction

This dissertation is primarily concerned with the distribution regression problem.

This is the setting where the covariates from an analysis are distributional objects.

In Chapter 2 we show how this kind of problem naturally arises in functional

magnetic resonance imaging (fMRI) when one considers non-localized effects as

a form of omnibus starting point. As an application, we consider 47 primary

progressive aphasia (PPA) patients with various levels of language abilities. These

patients were randomly assigned to two treatment arms, tDCS (transcranial direct-

current stimulation and language therapy) vs sham (language therapy only), in

a clinical trial. We utilize the connectivity measures as of they are samples from

individual distributions. We estimate the density of correlations among the regions

of interest (ROIs) and study the difference in the density post-intervention between

treatment arms. We discover that it is the tail of the density, rather than the mean

or lower order moments of the distribution, that demonstrates a significant impact

in the classification.

In Chapter 3, we turn to study the theoretical properties of the same sort of

distribution regression problems that from Chapter 2. However, we extend the
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approach to propose a variant of Gaussian process regression that can be used for

distributional covariates and show that the posterior contracts in optimal rates

given the regression function being smooth to certain degree. The procedure we

propose does not require one to estimate any individual densities and close form

inference can be performed with only samples of subject distribution we observed.

We also develop a low-rank approximation method to accelerate the algorithm

that could be used in real life application where exact inference is not needed.

In Chapter 4, we take a different direction towards general purpose algorithms

that are applicable in nearly any complex statistical computational setting using

fixed point algorithms. Here, we perform a study that reviews the state-of-art

black-box acceleration algorithms for fixed-point problems, which characterized

many, if not most, statistics and data science optimization algorithms. We also

propose a variant of the restart Nesterov accelerated gradient algorithm that can

also be used to accelerate general fixed-point problems. We test all the algorithm

with six tasks, tailored to probe performance along important benchmark domains

that connect with some of the most popular uses of these algorithms. This include

multivariate-t distribution estimation, mixture distributions estimation, LASSO,

variational inference, matrix balancing and manifold embedding.
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Chapter 2

Differences in functional connectivity
distribution after transcranial
direct-current stimulation: a
connectivity density point of view

Bohao Tang 1, Yi Zhao 2, Archana Venkataraman 3, Kyrana Tsapkini 4, Martin A

Lindquist1, James Pekar5, Brian Caffo1

2.1 Introduction

The study of resting state brain connectivity via functional magnetic resonance

imaging (fMRI) involves the investigation of correlations between cortical seeds,

regions or voxels (henceforth referred to as foci). Friston, in particular, defined

functional connectivity as the correlations, over time, between spatially distinct

brain regions (Friston, 2011). Nearly all inter-subject investigations of connectivity

1 Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
2 Department of Biostatistics, Indiana University School of Medicine
3 Department of Electrical and Computer Engineering, Johns Hopkins University
4 Department of Neurology, Johns Hopkins School of Medicine
5 Department of Radiology and Radiological Science, Johns Hopkins School of Medicine
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have focused on localized correlations. That is, they consider correlations between

foci treated consistently across subjects. Mathematically, this can be described

as saying that the methods are not invariant to subject-specific relabeling of the

foci. In fact, for most methods, such as pairwise regressions on correlations across

subjects or decomposition methods, shuffling foci labels within subjects is a form

of null distribution. Furthermore, this lack of invariance applies regardless of the

degree of granularity of the analysis, from regions to seeds to voxels (Friston, 2011;

Damoiseaux and Greicius, 2009; Bastos and Schoffelen, 2016). The methods and

choice of granularity all center the focus on geographic consistency of correlations

across groups of similar subjects. Individual topography (Kong et al., 2019) and

functional connectivity alignment (Haxby et al., 2020) are another set of methods

that allow for spatially inconsistent relationships beyond subject-specific structure.

However, their effort of finding subject specific parcellation / transformation is

still for the purpose of localization. Other exceptions include many variations of

graph theory based methods, where graphical features may not be localized across

subjects in the sense of summarising multiple connections (Shen et al., 2017) or

being invariant to subject-specific foci labels (Koutra, Vogelstein, and Faloutsos,

2013; Vogelstein et al., 2012).

To illustrate the idea of label invariance, consider a scenario where one reduces

the connectivity measures to subject-specific binary graphs (by thresholding). If

the effect of the graphs on the outcomes is invariant to the nodes (foci) correspond-

ing to the edges, then clearly it is sufficient to know the number of edges that are

present for each subject’s graph, since given that information one can create the

set of equivalent graphs under node invariance. This is equivalent to saying the

relationship between the outcome and connectivity graph, is solely dependent
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on the estimated probability distribution for the edges under an assumed inde-

pendent and identically distributed edge distribution, since that distribution only

depends on the total number of edges. (This is the Erdős-Rényi random graph

model.) Our approach formally builds on this idea. But we further consider a ran-

dom weighted graph model rather than thresholding to obtain binary edges, and

proposes a specific functional linear model for the relationship between outcomes

and the connectivity density.

We demonstrate the benefits of using the distribution of resting state correla-

tions as covariates using functional data analysis tools. We suggest the use of the

quantile density, the density of connections evaluated at evenly spaced quantiles

of the connections, as this improves performance. Regardless of these choices,

utilizing connectivity density regression has several benefits. A primary one is

the relaxation of the consistent localization assumption across subjects. In the

appendix, we demonstrate mathematically how connection densities achieve this

invariance. Localization analyses makes the, often unchallenged, assumption

that pairs of foci represent the same correlated functional specialization across

exchangeable subjects. This assumption is grounded in the neurological theory

of functional specialization dating back to the foundational works of Broca and

Weirnicke (Broca, 1861; Wernicke, 1874). However, it is clear that in specific appli-

cations and biological settings, the neural geography of functional specialization

can vary. As an extreme example, subjects with brain damage in their youth often

have the neuroplasticity that remaps a function to atypical areas (Finger and Almli,

1985).

Hyperalignment (Haxby et al., 2020) also allows for a high degree of subject-

specific functional specialization. However, unlike connectivity density regression,
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localization remains the goal in hyperalignment, and therefore, a multi-parameter

alignment transformation must be estimated per subject. Connectivity density

analysis can be seen as a complementary, technique that does not require esti-

mation of subject specific alignment. Further, focusing on connectivity densities

drastically simplifies the problem and reduces multiplicity concerns. Of course,

these benefits come at the cost of not considering potentially relevant localization

information, and so the technique can not be more sensitive to the detection of

localized effects with a reduced search space and correct a priori localization

hypotheses. It would be accurate to say that focusing on connectivity densities

in analysis lies at one end of the spectrum of model localization assumptions,

whereas pair at a time models lie at the other extreme and hyperalignment lying

somewhere in the middle.

There are existing studies that utilize the distribution of resting state corre-

lations. For example, Petersen, Müller, et al., 2016 consider the distribution of

correlations between a seed voxel and all other voxels within a region of interest

(ROI), to summarise the ROI state. Also, Scheinost et al., 2012 further considered

such distributions across all pairs of voxels. This work derived a degree function

from the connection density as a summary of the connectivity of each voxel. As a

result, these studies continue to focus on localized effects, where the use of the

connectivity density is mainly to achieve a more informative localized summary

of brain connectivity.

This study is motivated by a resting-state fMRI study of primary progressive

aphasia (PPA) patients, where it is feasible to want to relax the geometric local-

ization assumption. In the study, the patients were randomly assigned into two

treatment groups, 1) tDCS (transcranial direct-current stimulation Nitsche et al.,

6



2008) and language therapy versus 2) a sham tDCS and language therapy only. In

the tDCS group, the nominal stimulation target was the left inferior frontal gyrus

(IFG). Since the actual area of stimulation my vary, even if only slightly, it is rele-

vant to consider models that are less dependent on localization. In addition, the

stimulation electrode patches were size of 5 × 5 = 25 cm2. Thus, the stimulation

areas may have extended beyond the left IFG in a way that may induce additional

variation across subjects that would also motivate considering techniques that

are robust to violations of localization assumptions. Here, we propose a novel

approach to represent the effect of stimulation on functional connectivity. By

ignoring spatial heterogeneity, we directly study the change on the distribution of

correlation between the ROIs.

The manuscript is organized as follows. In Section 2, the experimental design

and approach are introduced. Results both for simulated and real data are shown

in Section 3. Section 4 contains a summary and discussion.

2.2 Material and Methods

2.2.1 Experimental Design

The data analyzed in this study were part of a larger randomized, double-blinded,

sham-controlled, crossover study on aphasia treatment using tDCS. All of the

analyzed subjects had at least two years of progressive language deficit and no

history of any other neurological condition that may have affected their language

ability. Subjects had atrophy predominantly in the left hemisphere. Subjects were

diagnosed via neuropsychological testing, language testing, MRI and clinical

assessment according to consensus criteria (Gorno-Tempini et al., 2011). The study
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was approved by the Johns Hopkins Hospital Institutional review board and all

subjects provided informed consent to participate in the study.

Each subject was diagnosed with one of the PPA variant types: logopenic,

nonfluent, or semantic. Randomization was conducted within each variant type

with an equal probability assigned to either the tDCS or sham group. As shown

in Table 2.1, the two groups are balanced in both demographic and clinical char-

acteristics. The language component of severity was evaluated based on the

revised fronto-temporal dementia clinical dementia rating (FTD-CDR) used to

rate severity in PPA (Knopman et al., 2008). To calculate severity, three raters

independently scored each item based on the interaction with the participant and

family, language, cognitive testing, and questionnaires, followed by a discussion

to produce a consensus score. In the tDCS group, the Soterix Transcranial Direct

Current Stimulation 1 × 1 Clinical Trials device (Model 1500) was used to deliver

tDCS (for tDCS setup details, see Tsapkini et al., 2018). The anode was placed

over the left frontal lobe and the cathode was placed over the right cheek. The

size of the nonmetallic, conductive rubber electrodes (fitted with saline-soaked

sponges to limit skin-electrode reactions) is 5 cm × 5 cm, which covers the whole

left IFG. In each tDCS session, the density of the delivered current was 2 mA

and the delivery lasted for 20 minutes. Simultaneous with the tDCS delivery,

language therapy was initiated and continued for an additional 20 to 25 min-

utes beyond the cessation of tDCS. The sham group had 30 seconds of current

ramping up to 2 mA and then backing down to 0 mA simultaneous with the start

of language therapy. These procedures have successfully blinded participants

to the stimulation condition (Gandiga, Hummel, and Cohen, 2006), as well as

the speech-language therapist. The protocol required 15 consecutive weekday
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sessions for each participant. Efforts were made to adhere to the schedule, though

some participants had to leave a few days earlier because of other commitments

(median number of sessions: sham = 11, tDCS = 13). In the language therapy,

we combined the spell-study-spell procedure with an oral and written naming

paradigm and developed individualized trained and untrained word sets (Ficek

et al., 2018), where trained and untrained sets (10 to 30 words depending on

individual severity) were matched in length and frequency. Each participant was

shown a picture on a computer, asked to orally name it and to write the name.

If the participant could not name the picture (orally or in writing), they were

asked to provide 3 characteristics of the item to evaluate and reinforce semantic

knowledge. If they still could not describe the word orally, they were offered the

correct word and asked to repeat for 3 times. Likewise, if the participant could not

write the word, or wrote it incorrectly, the therapist would offer the correct spelling

in a spell-study-spell procedure. That is, the therapist wrote the correct word,

reviewed each letter’s sound, and then asked the participant to copy the word

three times. Letter accuracy was determined based on a scoring system (Goodman

and Caramazza, 1985) that considered letter deletions, additions, substitutions,

and movements. Rather than whole-word accuracy, letter accuracy was consid-

ered as a more precise evaluation as it captures the effects of different types of

errors. Each letter was evaluated with 1 point, 0.5 points for correct identification

and 0.5 points for correct position. Scores for trained and untrained words were

transformed to percentage points for each participant.

A total of 50 right-handed, native English speaking patients had a pre-intervention

scan (scan1) and 48 had a post-intervention scan (scan2). One patient was deleted

from the analysis because of missing values in the connectivity matrix. Among the
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remaining 47 post-intervention scanned patients, 25 had transcranial direct-current

stimulation + language therapy and the remaining 22 patients had the sham treat-

ment plus language therapy. Several baseline covariates were recorded including

gender, disease onset (years), age at the start of therapy and language severity.

These patients were diagnosed with three variant types, including: logopenic,

nonfluent, and semantic. Diagnoses were based on which function(s) were compro-

mised. Patients with the Logopenic variant PPA (lvPPA) present with word-finding

difficulties and disproportionately impaired sentence repetition. Patients with

nonfluent variant PPA (nfvPPA) present with difficulty producing grammatical

sentences and/or exhibit motor speech impairment (apraxia of speech). Finally,

patients with semantic variant PPA (svPPA) present with fluent speech, but im-

paired word comprehension. See Table 2.1 for a summary of demographic and

clinical information on the participants.

Combined (n = 47) tDCS (n = 25) Sham (n = 22)

Sex 22F, 25M 11F, 14M 11F, 11M

PPA variant 15L, 23N, 9S 9L, 12N, 4S 6L, 11N, 5S

Age 67.3 (6.8) 65.8 (8.1) 69.1 (5.0)

Year post onset 4.2 (2.8) 4.3 (3.2) 4.0 (2.3)

Language severity 1.7 (0.8) 1.7 (0.9) 1.8 (0.8)

Total severity 6.3 (4.5) 5.7 (3.9) 7.0 (5.2)

Table 2.1: Patient demographics. For age, years post onset, severity, values shown are
mean (standard deviation). P-values are from the Welch two sample t-tests for continuous
outcomes and Fisher’s exact test for categorical outcomes. Language severity is based on
the language subset from the FTD-CDR scale. Total severity refers to the sum of boxes,
including language and behavior as added in Knopman et al., 2008.
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2.2.2 Data Preprocessing

MRI scans were obtained at the Kennedy Krieger Institute at Johns Hopkins

University, using a 3 T Philips Achieva MRI scanner equipped with a 32-channel

head coil. Resting-state fMRI (rsfMRI) data were acquired for approximately 9

min (210 time-point acquisitions) post-intervention. We used a 2D EPI sequence

with SENSE partial-parallel imaging acceleration to obtain an in-plane resolution

of 3.3 × 3.3 mm2 (64 × 64 voxels; TR/TE = 2500/30 ms; flip angle = 75◦; SENSE

acceleration factor = 2; SPIR for fat suppression, 3 mm slice thickness). The data

were co-registered with structural scans into the same anatomical space. Structural

scans, acquired axially with a scan time of 6 min (150 slices), used a T1-weighted

MPRAGE sequence with 3D inversion recovery, magnetization-prepared rapid

gradient, isotropic with a resolution of 1 × 1 × 1 mm3 (FOV = 224 × 224 mm2;

TR/TE = 8.1/3.7 ms; flip angle = 8◦; SENSE acceleration factor = 2).

Using MRICloud, a cloud-platform for automated image parcellation approach

(atlas-based analysis), the MPRAGE scan was parcellated into 283 structures (Mori

et al., 2016). In detail, each participant’s high resolution MPRAGE was segmented

by using a multi-atlas fusion label algorithm (MALF) and large deformation

diffeomorphic metric mapping, LDDMM (Ceritoglu et al., 2013; Miller et al., 2005;

Tang et al., 2013). This highly accurate diffeomorphic algorithm, associated with

multiple atlases, minimizes the mapping inaccuracies due to atrophy or local

shape deformations. All analyses were performed in native space. To control

for relative regional atrophy, volumes for each ROI were normalized by the total

intracerebral volume (total brain tissue without myelencephalon and cerebrospinal

fluid). The resting-state fMRI was also processed in MRICloud and analyzed in a
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seed-by-seed manner. Image processing is described in Faria et al., 2012 including

routines imported from the SPM connectivity toolbox for coregistration, motion,

and slice timing correction, physiological nuisance correction using CompCor

(Behzadi et al., 2007), and motion and intensity TR outlier rejection using ART

(https://www.nitrc.org/projects/artifact_detect/). The MRICloud pipeline

followed established steps for rsfMRI processing as follows. After exclusion of

outlier TRs per the ART routine (parameters: 2 standard deviations for motion

and 4 standard deviations for intensity, more severe than the default of 9), the

movement matrix combined with the physiological nuisance matrix was used

in the deconvolution regression for the remaining TRs. Outlier rejection and

regression of motion parameters minimizes potential motion effects. The parcels

resulting from the high resolution T1 segmentation were brought to the resting

state dynamics by co-registration. Time-courses of 78 cortical and deep gray matter

ROIs were extracted and the correlations among them were calculated.

2.2.3 Density regression

We propose to quantify the effect of possibly non-localized stimulation on func-

tional connectivity through a density regression. Let Ci(u, v) be a connectivity

measure, such as the correlation of the BOLD time series, between foci u and v for

u = 1 . . . p and v = u . . . p and then let Ci be the collection of connectivity mea-

surements, typically represented by a symmetric matrix, but in our case simply

an ordered vector. We study the distributional summary of the collections of Ci

exactly as if they were drawn independently from a distribution. Let f̂ i be the

estimate of the associated density fi of connections for subject i. Our proposal

is to analyze fi with functional regression methods. A motivation for studying

12

https://www.nitrc.org/projects/artifact_detect/


Figure 2.1: From MRI scan to connectivity density

fi can be obtained by the weaker assumption of exchangeability of the labels.

Such exchangeability translates in this context to the relevant information for pre-

dicting the outcome being in the proportion of stronger and weaker connections,

regardless of where they occur.

The process of proceeding from fMRI scans to the connectivity density is out-

lined in Figure 2.1. We estimated the connectivity matrix via temporal correlations

of BOLD signals between regions of interest (ROIs) after parcellation, which were

then passed to a density estimation algorithm. Specifically, we used the vectorized

elements in the upper triangular portion of the connectivity matrix to estimate the

density using smoothing splines (Gu and Qiu, 1993). This performs maximum

likelihood estimation on the spline coefficients for estimating the logarithm of the

density function under a smoothness penalty. We chose this approach as it directly

returns the splines, which are both mathematically and practically convenient,

especially for performing a functional regression. In addition, it sets a boundary

on the support for the estimated density, which is beneficial here, as correlation

coefficients are bounded between −1 and 1. Kernel density estimators (Silverman,

1986) were also implemented as a comparison.

Our proposal is to use f̂ i to characterize Ci and subsequently study the relation-

ship between f̂ i and variables of interest. In the tDCS study, the variable of interest

is treatment status. Since the { f̂ i} are (infinite dimensional) functional data, we
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employ functional data analysis tools (Ramsay, 2004; Ramsay and Silverman, 2007;

McLean et al., 2014). Logically, one would model that treatment status predicts

connectivity. However, treating complex data as covariates is typically more con-

venient than treating them as the outcomes. For example, the ability to incorporate

other covariates is simply adding terms in a regression model. Unlike models

for complex multivariate structured outcomes, an outcome reversed functional

approach can be easily implemented with existing software tools available in any

statistical package. As such, the method extends easily to longitudinal models,

whereas longitudinal models for complex structured outcomes are not fully devel-

oped. Putting connectivity densities as covariates also makes the method directly

extendable to predicting subject-specific behavior scores. Therefore, we adopt

the ideas in case-control inverse regression (Prentice and Pyke, 1979; Rothman,

Greenland, and Lash, 2008), and predict whether a subject is in the treatment arm

using the connectivity density and the baseline covariates as predictors. Let Ai

denote the treatment assignment with Ai = 1 for tDCS and Ai = 0 for sham, and

Xi ∈ Rq denote the q-dimensional covariate vector with the first element one for

the intercept. The linear model considered is the following:

logit{P(Ai = 1|Xi, fi)} = X⊤
i β +

∫︂
T( f̂ i)g, (2.1)

where T is a given operator from L2 to L2 aiming to capture a specific characteristic

of the density functions. T can also be used to control the impact of possible out-

liers of connectivity measures, such as using quantile based transformations. The

function g is a coefficient function representing the effect of the tDCS used in this

experiment, which can potentially change for different simulation settings. The

parameter β ∈ Rq is the coefficient vector of the covariates, both to be estimated.
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Various choices of T and the shape of g have different interpretations on the

resulting model. For example, setting T( f ) = f , the identity function, the linear

predictor is
∫︁

T( fi)g = E[g(Zi)], where E[·] is the expectation of a random variable

and Zi is a random variable drawn from fi. With a sufficiently flexible choice

of g, Model (2.1) covers a broad range of possible model fits. However, many

of them may not focus on non-central components of the density, where effects

would likely occur because of the stimulation procedure. For example, if g is a

polynomial, the model considers the moments of the density (mean, variance,

skewness, etc.) as predictors. However, it offers no benefit over the direct usage of

the moment estimates of the connectivities. Thus, polynomial bases will not be

discussed further, though they do demonstrate an interesting special case of the

approach.

As for the choice of T, using T( f ) = log( f ) is similar to the use of the identity

function. It loses the expected value interpretation , while instead, performs

regression on the space of densities with Aitchison geometry (Egozcue, Díaz-

Barrero, and Pawlowsky-Glahn, 2006). Thus, it may better detect the influence of

the tail behavior on the outcome.

Another choice is the quantile mapping, Tq( f ) = F−1, where F is the cumula-

tive distribution function associated with the density f . With a sufficient number

of foci, this approach is approximately equivalent to using the empirical quan-

tiles of the connectivity data as the regressors. Our proposed approach is quite

similar to this. However, we further propose to weight the quantiles via density

quantile. Specifically, we set Tldq( f ) = log ◦ f ◦ F−1 = − log
[︁
(dF−1/dt)−1]︁ where

◦ is the function composition operator. The latter equality is easy to derive by

taking derivatives via the chain rule to the identity function, F ◦ F−1. Note that

15



Figure 2.2: An illustration of connectivity densities, its log transformation and its log
density quantiles. Plots shown for 10 random sampled subjects in our tDCS study and
functions are standardized across all subjects to have similar y scales along x-axis.

the density quantile f ◦ F−1 can be regarded as a quantile synchronized version

of the density function, and therefore is more sensitive to the changing tails. The

logarithm transform maps density quantile to a Hilbert space, which is practically

useful for linear models. This idea has been explored before as a potentially prefer-

able method for utilizing quantiles as regressors. Specifically, it is equivalent to

the Hilbert space mapping, suggested by Petersen, Müller, et al., 2016. Figure 2.2

shows original densities, log transformed densities and log density quantiles of 10

random sampled subjects in our tDCS study.

2.2.4 Reversing the predictor/response relationship

It is typical in regression models to consider the hypothetically functionally an-

tecedent variable as a predictor, independent or exogenous variable, rather than

an outcome, dependent or endogenous variable. A counterexample is in outcome

dependent sampling, such as in retrospective studies. We utilize the same strategy

of reversing the typical predictor / response relationship, as is more convenient
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for modeling with high dimensional and complex quantities (such as brain con-

nectivity) as the predictor. In the tDCS study, we model treatment assignment as

the outcome using a logit model with the connectivity density and other covari-

ates as the independent variables. This avoids the need to construct probability

distributions on the connectivity densities themselves.

To elaborate, using Bayes’ rule and P(Ai = 1) = P(Ai = 0) = 0.5 (due to the

randomization), for any function g and transformation T, we have:

Odds(Ai = 1|Xi, ⟨T( fi), g⟩) = P(⟨T( fi), g⟩|Ai = 1, Xi)

P(⟨T( fi), g⟩|Ai = 0, Xi)
,

where ⟨·, ·⟩ is any inner product of two functions. In our application we con-

sider logit models on P(Ai = 1|Xi, T( fi)), which depend on fi only though the

form ⟨T( fi), g⟩. Also, thanks to the randomized design, we can be aggressive in

excluding potential confounders as covariates. This is especially helpful given

the modest sample size. As the above relationship shows, our treatment assign-

ment outcome model, P(Ai|Xi, T( fi)), is consistent with any connectivity outcome

model, P(⟨T( fi), g⟩|Ai, Xi), where the likelihood ratio comparing treated to con-

trols is approximately log linear with our linear separable density model given in

Equation 2.1.

2.2.5 Estimation of the coefficient function

To estimate the coefficient function, g in Model (2.1) , we performed a functional

principal components analysis (fPCA, see Reiss and Ogden, 2007, for a review).

This reduces the dimension of the functional regressor using a set of data-derived

bases. In this approach, one calculates the PCA decomposition of the functions,

{T( f̂ i)}, using the Karhunen/Loève transformation (Ghanem and Spanos, 2003),
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where the covariance function is smoothed (Di et al., 2009). We selected the

leading principal components which explained over 99% of the variation as the

basis functions. Notice that the version of fPCA utilized here does not honor

possible density implied constraints of T( f̂ i). Generalized cross validation (GCV)

was used to choose the smoothing parameters (for detailed discussion, see Section

4.5.4 of Wood, 2004). Confidence bands were derived using a Bayes approach.

(Wahba, 1983; Nychka, 1988; McLean et al., 2014).

2.2.6 Comparison

To illustrate the benefit of conducting a delocalized analysis, a simulation study

based on the fMRI data collected in the tDCS study was conducted. We demon-

strate an extreme example where non-localized brain stimulation decreases statis-

tical power, or even makes it impossible to identify ROI pairs with a significant

effect when implementing a localization method. However, using connectivity

densities retains the relevant information. Our goal in this simulation was to create

a caricature of non-localized effects, to demonstrate the statistical direction that

the procedure highlights.

As a correlation coefficient, connectivity can be written as cos(θ) where θ is the

angle between two signals. In the simulation, consider a brain connectivity map

with 20 regions, R1 . . . R20. For every map, let θij be the angle between signals in

location i and j; we simplified the data generating distribution by assuming that

the angles, θij, are i.i.d. following a von-Mises distribution, M(µ, k), where the

density is f (θ|µ, k) = ek cos(x−µ)/2π I0(k), with I0 as the modified Bessel function

of order 0. The parameters, µ, k were estimated from pre-intervention patients

by maximum likelihood. This was done to have a realistic null distribution on
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densities.

A non-localized “stimulation” was simulated by perturbing region Ri with

equal probability across i. After stimulation, we simplified the effect via a degree

rotation, ϕ, for the signal at Ri. Correspondingly, all θij change the same amount

and the final post-stimulation connectivity was a convex combination of this

stimulated matrix and the pre-stimulation matrix, where the weight was used to

control the signal level and therefore controls the degree of difficulty in detecting

the effect. Denote Cij the pre-stimulation correlation between region i and j, that

Cij = cos(θij). A stimulation on region i0 yield a symmetric post-stimulation

connectivity Csti
ij as

Csti
ij =

{︄
Cij i ̸= i0, j > i
wCij + (1 − w) cos(θij + ϕ) i = i0, j > i

Notice that, although uniform stimulation on all regions of Ri is unpractical in

many situations, this simulation is a boundary case to understand the effect of

lacking localization. Mover, it is still consistent with other kinds of non-localized

effects that are random mixture of localized effects. In the Appendix, we also

describe and examine another intuitive simulation setting, and we observed

similar results.

For every run of the simulation, we sampled 50 pre-stimulation maps from

the pre-intervention scans and fit the parameters µ, k for each. We subsequently

simulated 50 connectivity maps from samples of fitted von-Mises distributions,

and applied the stimulation above for a random half of these maps. We chose

ϕ = π, and the weight w in the convex combination was chosen to be 75%.

Other values, ranging from 90% to 50%, were also tried and similar patterns
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were observed. Weights under 50% made the signal detection too easy and

methods are indistinguishable. Significance results for edgewise testing, principal

component regression and density regression were compared, with different

density regression transformations for 1,000 simulations. For completeness, we

also considered instances with no stimulation effect and when the stimulation was

localized at a specific region.

The edgewise regression approach considers the following model:

logit{P(Ai = 1|Xi, fi)} = X⊤
i β + Ci(s, t)αst, (2.2)

where s > t. The second approach was a regression model with dimension

reduced predictors:

logit{P(Ai = 1|Xi, fi)} = X⊤
i β + Siα, (2.3)

where Si are the leading principal components of the vectorized connectivity

matrix, Ci. We refer to this model as the PC model.

2.3 Results

2.3.1 Simulation

Figure 2.3a, 2.4a shows example connectivity matrices and the difference after

stimulation from an example simulation. The virtual stimulation was applied at

region 10 in the right panel plot, while the left panel is the pre-stimulation map.

We report the rate of positive findings for all methods. Results are shown in Figure

2.3c. Localization methods, including the dimension reduction method, do not find

any significant region pairs in the non-localized simulations. In contrast, in this
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setting, the density method detected the stimulation impact on the connectivity

densities. Among all the transformations, the log density-quantile transformation

was significantly better than others. We would like to reiterate that the simulation

is contrived to highlight an extreme setting. Connectivity density methods will

not necessarily increase the sensitivity of the analysis. If the true effect is localized,

it cannot be better than well specified localized method.

(a) (b)

Bonferroni FDR PC T0 Tl Tldq
Non-Localized 0.073 0.078 0.118 0.638 0.117 0.717

Localized 0.638 0.669 0.754 0.629 0.112 0.714
No-Stimulation 0.061 0.065 0.113 0.075 0.058 0.059

(c)

Figure 2.3: Figure (a) shows the simulated pre-stimulation connectivity matrix of a subject
and Figure (b) is the simulated post-pre difference in the connectivity matrix of the
same subject. Table (c) shows the ratio of significant positive findings over 1000 runs.
T0, Tl , Tldq are density regressions with the identity, logarithm and log density-quantile
transformation described in section 2.2.3. Bonferroni, FDR (Benjamini and Hochberg, 1995)
refer to edgewise regression with different multiplicity correction procedures. PC refers
to the principal component regression with the top 10 components, the number chosen
by minimizing the sum of type I error (significance ratio in Non-Localized situation) and
type II error (none significance ratio in Localized situation).
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2.3.2 Analysis of the tDCS data using localized methods

For the tDCS data, we tested the significance of the edgewise regression [Model

(2.2)], a principal components regression [Model (2.3)] and a LASSO post-inference

model (Dezeure et al., 2015) using connectivity of all ROI pairs. No foci-pair or

principal components was identified as significant in either regression model, at

Type I error rate levels of 0.05 or even 0.1. Of note, previous localization work

on related data (Ficek et al., 2018), yielded significant findings. However, the

total number of regions were restricted, thus dramatically reducing multiplicity

concerns. In this analysis, 78 regions were used, resulting in a more stringent

correction factor based on 78 choose 2, or 3,003 comparisons. In addition, a

more restrictive inclusion criteria in (Ficek et al., 2018) led to a different study

population.

2.3.3 Analysis of the tDCS data using the density regression

In this section, we present the analysis results of the tDCS study using the density

regression Model (2.1) with different transformations (T). The fitted coefficient

function, g, and its 95% confidence interval are presented in Figure 2.4. Functional

linear regression was performed using the refund R-package with default param-

eter of smoothed covariance fPCA, which chooses the number of components that

explains over 99% of the data variation.

Regressing on the density after applying the log-density quantile transform

yielded the highest number of significant signals, which reaches its maximum

around the 85th percentile. This potentially indicates that stimulation has a consis-

tent tail effect, which is more likely to be aligned by quantile, rather than absolute

22



value. Since the estimated coefficient function is significantly non-zero only in the

positive tail this suggests that the tDCS group had higher connection densities

in the tail than the sham group. That is, connectivity among the most connected

regions was higher in the tDCS group.

A likelihood ratio test was performed to compare logistic regression with only

baseline variables and our model including both the baseline variables and the log

density quantile term. The resulting p-value was 0.0052, indicating a statistically

significant gain of information from connectivity density at the 0.05 benchmark

type I error rate. The conclusion remains true if one applies a Bonferroni p-value

correction. Specifically, three transformations were compared and therefore the

corrected p-value is 0.017. Notice that this is already a conservative value. The

result agrees with a non-parametric permutation test where we do the same

regression but connectivity densities of subjects are randomly shuffled. Using

AUC as test statistic, we observe that the AUC of log density quantile model

is also significant larger than that of null distribution, which is the AUCs with

shuffled connectivity densities. The pvalue is 0.015± 0.0009 estimated from 20,000

runs. A further reanalysis of subgroups shows that the effect is driven primarily

by the nonfluent subtype which comprises 23 over total 47 subjects. There is not

enough data to investigate the possibility of different effects of other subtypes,

the least of which only has 9 subjects. We also performed a sensitivity analysis

examining the impact of hyperparameters in the density estimation. We changed

the smoothing parameter in spline smoothing and bandwidth in kernel density

estimation method, both in the range of [θ0/2, 2θ0], where θ0 is the corresponding

default value. For smoothing splines this value was selected by the approximated

cross validation method suggested in Gu and Wang, 2003 and for KDE this value is
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suggest by Silverman, 1986. We observed that the log density quantile transformed

model constantly gives significant information gain with p-value < 0.05 in all

settings, comparing with the demographic only baseline model. Therefore, the

method is not sensitive to reasonable deviations in hyperparameter selection.

(a) original density (b) log transform

(c) log quantile transform

d

(d) log quantile transform with KDE estimated
density

Figure 2.4: Model results on the tDCS experiment. The black solid line is the fitted
coefficient function, g, with the black dashed line referencing the associated 95% confi-
dence interval. Densities were estimate from smoothing splines implemented in the fda
R-package with 19 degrees of freedom for the spline basis. A kernel density estimator
(KDE,Figure 2.4d) is also computed and compared with smoothing spline (Panel 2.4c)
method. Contrasting 2.4c and 2.4d shows that the density estimation technique did not
impact results.

We also studied the effect of the estimated function on behavior change. We

found that the variable
∫︁

T( f̂ i)β̂ is significant (p < 0.05) for predicting the change
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of language ability, measured by untrained items, after transcranial direct-current

stimulation. Here β̂ is the coefficient function estimated above for T = Tldq and,

recall, f̂ i are the connectivity densities for post-intervention scans. The result

shows a necessary condition for connectivity density mediating the effect of

stimulation on language ability, which can motivate a future formal mediation

analysis.

2.3.4 Induced Connectivity

Consider the best model using the log density quantile transform, Tldq. We have

logit{P(Ai = 1|Xi, fi)} = X⊤
i β +

∫︂ 1

0
log[ fi ◦ F−1

i (q)]g(q)dq.

Notice that for the connectivity matrix, Ci, we have Fi{Ci} ∼ U(0, 1), a uni-

form distribution on [0, 1] via the probability integral transform. Let Qi(s, t) =

Fi{Ci(s, t)}. Then, it follows that:

∫︂ 1

0
log[ fi{F−1

i (q)}]g(q)dq = E[g(Qi) log fi{F−1
i (Qi)}]

≍ 2
N(N − 1) ∑

t>s
g{Qi(s, t)} log fi[F−1

i {Qi(s, t)}].

Therefore, for this subject, one can assign g{Qi(s, t)} log fi[F−1
i {Qi(s, t)}] as the

effect size for region pair (s, t). Averaging this effect across all patients yields an

importance metric for every region pair in the model. We call this stimulation

induced connectivity, since it describes how influential the correlation of each

region pair is in predicting stimulation status. The induced connectivity matrix is

shown in Figure 2.5, together with a summary of effect agreement across subjects,

where for each patient, region pairs are selected with top 5% absolute effect size
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(a) (b)

Figure 2.5: Figure 2.5a shows the induced connectivity described in section 2.3.4. IFG
regions (the tDCS target) are noted in the red box. Figure 2.5b shows some region pairs
with the most consistent contribution, measured by the frequency of having top 5%
absolute effect size across all patients.

and the frequency of each region pair being selected is calculated.

This technique, of course, returns to a discussion of localized effects. How-

ever, by investigating this measure one can ascertain the degree of localization

consistency across subjects - an impossibility with pure localization analysis.

2.4 Discussion

In this manuscript, a new framework for analysing functional connectivity was ex-

plored. Functional data analysis of log quantile connectivity densities investigates

possible non-localized effects associated with subject level variables. It is clear that

our method can be directly applied to other kinds of numerical measurements. For

example, partial correlations or entropy based measures. However, it continues to

be only useful suitable if connection exchangeability represents a useful model. A
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sizable by-product of this style of analysis is the drastic reduction of multiplicity

considerations. This is of great importance in connectivity analysis, where the

number of comparisons grows at a rate of the square of the number of foci being

considered. In the data application, we find associations between stimulation

and connectivity density. In contrast, edgewise methods fail to find any results,

because of multiplicity issues. This is partially due to a wide search of all possible

region pairs from the parcellation. Of course, one could also reduce multiplicity

concerns by restricting attention to regions associated with a priori hypotheses of

interest, as was done in Ficek et al., 2018. In contrast, investigating connection den-

sities is an omnibus approach that benefits from a reduction in the number of tests

over exploratory edge-wise approaches, a robustness to non-localized effects and a

robustness to the inclusion of unnecessary foci. These benefits come at the expense

of the loss of power and interpretability over analyses considering only a small set

of tightly specified edge-wise hypotheses. Our method can also be extended to

seed-based connectivity and voxel-by-voxel connectivity without any modifica-

tion. However, the assumption of complete node invariance discards a potential

sizable amount of relevant localization information. Therefore, we believe that

the method would be primarily useful as an easy and simple early stage omnibus

test, or after light localization efforts, such as considering connectivity densities

between voxels within sets of regions of interest. To further emphasize the ease

and simplicity of the method, we stress that that density regression can be coded

from scratch in only a few lines of code in any modern scripting environment with

PCA and GLM functions.

Density regression, as a prediction model, can be view as a generalization of

connectome-based predictive modeling (Shen et al., 2017). Connectome-based
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predictive modeling (CPM) uses individual connectivity matrices to predict behav-

ioral measures. The method first selects location-pairs that are most significantly

correlated with the outcome, then summarizes the matrix by adding up connectiv-

ity measures in selected pairs, and this sum is used as a predictor in a regression

model. In CPM, there is no localized effect and CPM can be viewed as a regression

on connectivity density using only a constant basis. Here we generalize it by

utilizing more distributional information.

An interesting direction to pursue with connectivity density methods is to

consider potential robustness to spatial registration (Oliveira and Tavares, 2014).

The connectivity density can relatively easily be shown to be invariant to rela-

beling and affine transformations (see Theorem 1 in the appendix). In contrast,

localization methods heavily rely on both accurate registration and biological

functional localization across subjects. Therefore, it is interesting to posit that

density regression could be used after only mild affine registration efforts prior to

the more time-consuming non-linear registration.

However, to reiterate, ignoring potentially useful localization information can

reduce power and sensitivity. Surely, the optimal strategy removes subject-specific

artifacts and reduces the search space with - correct - strong a priori hypotheses

and then tests only those edges. However, in the absence of this ideal case, one is

often confronted with a massive unstructured search problem with localization

analyses. In contrast, density regression is more akin to an omnibus F-test, looking

over a large range of edges, dramatically mitigating multiple comparisons issues

in the favor of testing one overview hypothesis, rather than a large collection of

highly specific ones. Therefore, we suggest the method as an early stage tool in a

neuroimaging data analyst’s toolbox.
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We used functional data analysis to relate connection densities to outcomes.

Functional data analysis tools (Ramsay and Silverman, 2007) have grown to be

quite flexible. Thus, density regression approaches can be relatively easily general-

ized to handle different settings, such as any typical statistical outcome model and

longitudinal data. Also, density estimates may naturally make adjustments for

missing data, in the form of missing foci, since the density can remain the same

in some contexts. This has potential broad implications for the study of stroke

and other diseases with abnormal brain pathology. Localization methods are

not available if the region of interest is damaged or missing. In contrast, density

based methods are easy to apply. In addition, we used PCA on the log quantile

densities as the basis for functional regression. The result is that the method can

be applied using standard software without modification. Other bases and penal-

ization strategies may improve the approach. In fact, the utility and application

of functional regression in neuroimaging has been greatly improved via recent

research efforts (see Goldsmith et al., 2011; Goldsmith et al., 2012; Goldsmith,

Wand, and Crainiceanu, 2011; Reiss et al., 2017, for examples).

Utilizing functional regression also has the benefit of producing more inter-

pretable models as compared with machine learning approaches. However, this

is achieved at a likely cost of prediction performance. It is possible that ML ap-

proaches could navigate the trade offs between localization and exchangeability

non-parametrically and possibly achieve better prediction performance. Thus, we

view density regression as a parsimonious modeling choice rather than a method

to optimize prediction performance.

Statistically, we assumed independence between subjects and relied on the

randomization to invert the predictor / response relationship using logit models.
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This borrows techniques from case referent sampling from epidemiology dating

back to the seminal work of Cornfield (see Breslow, 1996; Greenhouse, 1982, for

overviews). A benefit of doing this is that it is generally easier to have the more

complex variable as the predictor rather than a response. To elaborate, to have

a density as an outcome, predictions from the model must be functions that are

both positive and integrate to one. Most existing functional approaches, especially

point-wise ones, would satisfy neither criteria and modeling distributional out-

comes is an active area of statistical research. The probability space containing

the outcome is necessarily a probability distribution on distributions, such as a

Dirichlet process. While this is not a problem per se, it makes inference more

technically challenging. In contrast, by conditioning on the density, as we have

done, its distribution does not need to be modeled and the fitting and inference

requires little more than well known generalized linear model techniques. In

Appendix 2.6.3 we further the discussion in comparison with function on scalar

regression. It is seen that, with almost no effort, one obtains the use of easier

models (GLMs) and appropriate inferences by reversing the relationship and the

resulting estimates are similar to those of function on scalar regression. However,

because the constraints are not accounted for in the function on scalar model,

inferences remain in question.

Nonetheless, we reiterate that the use of connectivity density as a regressor

remains useful, even if one prefers not to flip the predictor / response relation-

ship. For example, in our tDCS example, connecting the connectivity density to

behavioral outcomes would be relevant, where the natural predictor would be

functional connectivity.

Independence between subjects was used for inference. We also used density
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estimates for connection densities, techniques that implicitly require sampling

assumptions for theoretical convergence. However, we contend that connectivity

densities are intrinsically of interest, and therefore no appeals to super-population

inference and sampling assumptions are needed for estimation. This is analogous

to spatial group ICA, where productive estimates are obtained via independence

assumptions on voxels over space, without a true sampling or super-population

model for inference (Calhoun et al., 2001). An interesting future direction of

research would investigate dependencies between foci correlations.

Our recommended approach uses log quantile densities as the functional

predictor, rather than the density, distribution function or quantile function directly

(Petersen, Müller, et al., 2016). This approach has convenient theoretical properties,

but also the practical benefit of focusing attention on tail behavior, where effects

are most likely to be seen. Utilizing the quantile density also creates robustness to

irrelevant foci pairs being included in the analysis.

Our simulations and data results focus on settings that highlight the benefits

of an omnibus density regression approach. In the simulations, we investigated

a non-localized caricature of typical effects. Similarly, in our data analysis, we

performed no filtering of regions prior to analysis (thus magnifying multiple

comparison concerns). It was shown in the simulation, that functional density

regression approaches can find real non-localized effects, whereas, as expected,

edgewise methods do not find any. It should be emphasized that the performance

of the density regression approach is invariant to the distribution of effects across

subjects, whereas edgewise approaches become viable as the degree of localization

increases.

In addition, the flexibility of the approach finds effects in the real data, even
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though there are a great deal of irrelevant connections (i.e. unnecessarily included

region pairs) being studied. Edgewise and other regression approaches are highly

sensitive to unnecessary null connections being included in the analysis. A benefit

of the data being considered is the likely existence of an effect related to the

stimulation. However, we emphasize that a single omnibus approach does not

represent a full analysis of the data. We recommend this approach as a global

analysis to be performed prior to edgewise or other localization methods. This

mirrors the classic ANOVA (analysis of variance) approach of performing an

overall F test before investigating pairs of explanatory factor levels. It would be

most useful in exploratory model building where foci selection is not restrictive.

In cases of tightly coupled statistical hypotheses involving relatively few regions

or foci, density regression would not be needed or particularly helpful.

This methodology raises many avenues for future research. For example,

one the idea of non-localized effects in dynamic connectivity (Hutchison et al.,

2013) via stochastic processes of connectivity densities (by time). In addition,

there are multiple alternatives for densities estimated from correlation of each

region pair for contralateral regions. Here, it should be acknowledged that there is

strong homotopic correlations from symmetric regions. One should then deal with

multivariate densities estimated from pairs of correlations. This same logic could

be applied to geographically close regions and for instances with longitudinal

scans. The connectivity density of spectral information (Haan et al., 2012), like

leading principal component scores, should also be studied to potentially extract

relevant brain graph properties.

Finally, there’s the role that connecvity density methods could play in fMRI

analysis of subjects with missing brain tissue, such as studies of stroke or surgical

32



interventions. Connectivity density methods may be resilient to the missing data

impact of differential brain structure in a way that localization methods are not. In

fact, it is interesting to conjecture what localization methods even mean in these

settings where a subset of subjects are missing areas of localization. In contrast,

density methods may provide a more robust and well defined methodology. It is

worthy of note that components of graph methodology (Sporns, 2010; Bullmore

and Sporns, 2009) often considers summary metrics that do not require or assume

localization. Density regression can be considered a subset of weighted graph

metric analysis.
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2.6 Appendix

2.6.1 Invariance properties

Here we discuss some invariance properties of the connectivity density. Consider

C a connectivity measure where C(x, y) is measuring the connectivity between

location x ∈ D and y ∈ D. The connectivity density can be defined as the density

of random variables C(U, V), where (U, V) follows a sampling distribution on

D × D. Denote fsample as the density of that sampling distribution. It is easy

to see that the connectivity density, f , defined in Section 2.2.3 also follows such

a definition while using the uniform distribution as fsample. We prove that f is

invariant to re-labeling in discrete cases (e.g. connectivity between ROIs) and

to affine transformation in continuous cases (e.g. interpolation of connectivity

between voxels). Denote supp(C) be the support of connectivity measure C. After

any invertible transformation, F , the connectivity measure CF will be naturally

defined as CF (x, y) = C(F−1(x),F−1(y)). Then we have the following Theorem

1

Theorem 1. Let (UC, VC) follow the uniform distribution on supp(C). Then, the

density of C(UC, VC) has the same distribution with CF (UCF , VCF ), where F is any

permutation map if supp(C) is a finite discrete set and F is any affine transformation

if supp(C) is a closure of some open set in R3. Therefore, connectivity densities are

invariant to these transformations.

Proof. By simple change of variable calculus of random variables, we know that

under sampling distribution fsample, C(U, V) has the the sample distribution with
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CF (U′, V′) if (U′, V′) ∼ f ′sample where

f ′sample(x, y) = |F |2 fsample(F−1(x),F−1(y))

.

In our uniform cases, the Jacobian |F | and sampling distribution fUC,VC , fUCF ,VCF

will always be a constant. Therefore the condition above always holds and

C(UC, VC) must follow the sample distribution with CF (UCF , VCF ).

Since the uniform distribution is the only distribution invariant to all affine

transformations / permutations, we know that the connectivity density defined

in Section 2.2.3 is also the only possible distributional summary that has such an

invariance property for arbitrary connectivity measures.

2.6.2 Additional Simulation

Here we describe another intuitive simulation setting and show that a similar pat-

tern is observed. Specifically, it shows that our methods can detect non-localized

effects, while edgewise method or dimension reduction methods, like PCA, can

not, although the best transformation of densities might change for different signal

distributions.

Again we consider connectivity matrix of 20 regions R1, · · · , R20. A no-stimulation

connectivity matrix, C, is sampled uniformly from 50 pre-intervention scans in

our data and its 20 rows and columns are also uniformly sampled from an original

78 by 78 connectivity matrix. Now consider a localized stimulation as additive

Gaussian signals to the Fisher-z transformed correlation for specific region pairs.
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It then gives post-stimulation connectivity matrix Csti differs with C only on

tanh−1 Csti
ik jk = tanh−1 Cik jk + εk (2.4)

for {(ik, jk)|k = 1, 2 · · ·K} some specific region pairs and εi i.n.d. follows N (µk, σ2
k ).

Notice that this formulation corresponds with the underlying effect pattern in

some common edgewise analysis of change in connectivity, for example Ficek

et al., 2018.

In the simulation for localized analysis, the locations (ik, jk) are uniformly ran-

domly selected from all 190 region pairs and then fixed for all samples. Naturally

a stimulation with non-localized effect would also follows Equation (2.4). But

every time it is performed, {(ik, jk)} becomes another independent sample from

the 190 regions. In the experiment, we choose K = 10, µk = 0.5, σk = 0.5 for all

k. We also observed similar patterns for a variety of parameters settings. We ran

the experiment for 10,000 independent simulations. For every run we sampled

100 no-stimulation connectivity maps with another 100 each for localized stimu-

lation, non-localized stimulation and no stimulation. We studied how different

methods work in these situations as described in Section 2.2.6. The results for

the simulation can be found in Table 2.2. We observe a similar pattern as Table

2.3c that connectivity density based methods can detect non-localized effect while

edgewise analysis and principal component analysis cannot. It also shows that the

optimal transformation might be different for different patterns of the effect, as

the log transformation is the best in this situation while the log-density-quantile

transformation is the best in Table 2.3c.
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Bonferroni FDR PC T0 Tl Tldq
Non-Localized 0.060 0.065 0.089 0.618 1 0.870

Localized 0.938 0.953 0.994 0.620 1 0.862
No-Stimulation 0.048 0.051 0.082 0.060 0.056 0.053

Table 2.2: The table shows the ratio of significant positive findings over 10,000 runs.
T0, Tl , Tldq are density regressions with the identity, logarithm and log density-quantile
transformations described in Section 2.2.3. Bonferroni, FDR (Benjamini and Hochberg,
1995) refer to edgewise regression with those associated multiplicity correction procedures.
PC refers to principal component regression with the top 20 components.

2.6.3 Connectivity Density as Outcome

In this section we detail why we reversing the predictor/response relationship is

a compelling idea and thus compare the results with a typical function-on-scalar

regression with connectivity densities as outcomes.

Excepting the convenience, as discussed in section 2.4, the main reason for

reversing the predictor/response is that typical function-on-scalar regression meth-

ods can not satisfy the integral constraints on the outcome, which are densities or

isomorphic transformation of densities. Therefore, the specified distribution is not

correct, creating concern regarding inferences.

Consider the following typical linear functional model with outcome function

y and features x.

y(t) = f0(t) + x · f (t) + ε(t) (2.5)

where y is a density functions, log density function, or the log-density-quantile

transformations. Recall, density functions must be both positive and integrate

to 1. Log densities require integral of their exponential to be 1 and Log density

quantiles require their corresponding quantiles be supported within [-1, 1], because

they are quantiles of correlations. It is easy to see that within the linear functional
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framework 2.5, all these constraints cannot be translated into individual constraints

on estimation of f0, f . Therefore, the model is specifying an easily demonstrably

false distribution, resulting in possibly incorrect inferences even if estimation

remains viable. Other methods exist to correct this problem, for example Szabó

et al., 2016; Chen, Lin, and Müller, 2021, but this is an active area of research and

is thus challenging to implement for most practitioners.

In Figure 2.6, we show the estimation results of model 2.5 on our data as a

reference. These are the slope functions of the treatment assignment variable, the

estimated differences before and after tDCS stimulation. We used the regression

methods described in Reiss, Huang, and Mennes, 2010 to solve the problem 2.5

and the penalty parameters selected by generalized cross validation. There is, as

expected a high degree of similarity between the corresponding curves and those

in Figures 2.4a-2.4d. But, as we explained above, the distributional assumptions

are questionable in this context and the confidence bands remain in question,

and therefore we do not report such results in the main paper. We also note the

distinction in convenience, whereby we obtain similar estimates using only a GLM,

perhaps the most standard statistical model.

Figure 2.7 shows one sample outcome function from the fitted model. We

have checked that it breaks the positive constraints on both tails and its integral is

0.99 < 1. Also it is clear that the confidence band from the model does not make

sense because all densities should be non-negative. Therefore the inference results

from the model 2.5 are wrong.
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(a) original density (b) log transform (c) log density quantiles

Figure 2.6: Estimated difference function of the transformed neural densities between
treatment and control groups, holding all other variables the same. Similar patterns could
be found compared to Figures 2.4a-2.4d but their confidence bands are biased because no
constaints on the outcome function are satisfied.

Figure 2.7: A sample outcome function from the fitted model. It breaks the positive
constraints on both tails and its integral is 0.99 < 1. Also the confidence band from the
model does not make sense because all densities are non-negative.
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Chapter 3

Information Rates of Bayesian
Distributional Regression

Bohao Tang 1, Abhirup Datta1, Yi Zhao 2, Brian Caffo1

3.1 Introduction

This chapter considers the estimation error bounds for a regression setting y =

f (x) + ε, where the outcome, y, is a scalar and the regressor, x, is an unknown

probability distribution of which a finite sample is observed. Regressing with dis-

tributions, e.g. distributions as outcomes, predictors or both, is sometimes called

“distribution regression” (Szabó et al., 2016; Oliva, Póczos, and Schneider, 2013;

Fang, Guo, and Zhou, 2020; Law et al., 2018) with the associated terms: “scalar

on distribution”, “distribution on distribution” and “distribution on scalar” used

for the specific outcome and predictor settings. Standard methods for the scalar

outcome case is to estimate the density function through a kernel density estimate,

or other equivalent convergent estimator, and utilize typical functional regression

1 Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
2 Department of Biostatistics, Indiana University School of Medicine
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techniques. Póczos et al., 2013 and Oliva et al., 2014 prove the consistency of

this method. It should be emphasized that this approach is only applicable if the

outcome is scalar. Another well known method is embedding the distributions in

a reproducing kernel Hilbert space (RKHS) via a kernel mean embedding and then

applying RKHS regression. For example, a multivariate probability distribution,

P, on Rd would be embedded as:

µp(t) =
∫︂

Rd
K(t, s)P(ds), (3.1)

where K is a Mercer kernel (i.e. symmetric and positive semidefinite). Changing P

to the empirical distribution, P̂, gives one the empirical kernel mean embedding,

µ p̂, that one can use with observed data. Under typical assumptions, Szabó et al.,

2016 showed this method can achieve optimal bounds with P̂ for excess risk, both

for scalar outcome and distributional outcomes.

Gaussian process regression is a popular Bayesian non-parametric method

used for scalar on vector regression y = f (x) + ε, for scalar y and vector, x.

Gaussian process regression has a close connection to RKHS regression in that the

posterior mean of Gaussian process regression is the same as the minimizer of

a RKHS regression with the same kernel and suitable regularization parameters.

Asymptotics for such methods are also well established (Vaart and Zanten, 2008;

Van Der Vaart and Van Zanten, 2011; Sniekers and Vaart, 2015; Choi, 2007). For

example, Van Der Vaart and Van Zanten, 2011 proved that the posterior risk for

the L2 norm:

E f0

∫︂
∥ f − f0∥2

2 dΠ( f |X1:n, Y1:n) (3.2)

are bounded by an optimal rate for f0 in Hölder space, where f0 is the true function

and the expectations are under the true data generating process. Notably, here one
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can not only bound the prediction error, but also the estimation error, ∥ f − f0∥2.

We would like to explore whether similar results hold when x is generalized

to be a multivariate Gaussian process. Consider a linear case generalization as

follows:

y = Ex f + ε,

where Ex represents expectation under the distribution associated with x, i.e.

Ex f =
∫︁ ∞
−∞ f (x)Px(dx). Here, note that f references a functional transformation

of interest, not the density associated with x. Specifically, as Px limits to full

probability at a single point, or equivalently that the associated covariate density

is a Dirac mass, the problem degenerates to the typical scalar on vector regression,

and hence this distributional formulation is a generalization. Furthermore, if all

x have known associated densities, the problem becomes a weighted form of

scalar on functional linear function regression, y =
∫︁

f (x)Px(dx) + ε, where it is

known that optimal estimation error bounds can only be achieved under restrictive

assumptions. Specifically, the alignment of the eigenspace of the RKHS that f0 lies

in and the covariance kernel Cov(p(x1), p(x2)) of the densities p possesses (Yuan

and Cai, 2010).

In practice, one only observes finite samples from the x distribution. That

is, there is a two stage sampling procedure, first of individuals, and secondly of

samples from the realized covariate density. Specifically, for every subject, one

observes a finite empirical sample, {xij}j, from its distributional covariate, xi. We

propose a unified method that directly utilizes the covariate density samples, xij,

and in the process obtain optimal estimation error bounds for regular functions, f ,

under assumptions on the distributional process of x that are practically acceptable
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and empirically verifiable.

To compare our contributions with existing related work, Póczos et al., 2013

and Oliva et al., 2014 use kernel density estimators as an intermediate step and

thus only consistency of the regression is shown. Szabó et al., 2016 can be regard

as a fully non-linear version of distribution regression. However, that work

focuses on prediction error bounds and requires the outcome, y, to be bounded, or

have bounded support if y is a distribution. Our work relieves the boundedness

assumption of the outcome and we focus on how well the regressor f can be

estimated. In addition, we quantify uncertainty through full Bayesian modeling.

Augustin et al., 2017 uses a similar model which can directly work on samples

of individual distributions. However, they don’t consider the underlying data

generation process, therefore no theoretical guarantee is presented. Law et al., 2018

is the only Bayesian distribution regression method we observed in the literature.

However, in this work, fiducial landmark points, rather than full samples, are

used and priors are put on the kernel mean embeddings of those landmarks

points. Also through these landmark points they only consider a restrictive set

of regressors and no theoretical properties are shown. We instead consider a

fully non-parameteric regression functions, f , only assuming certain regularities.

Furthermore, we put priors directly on the functions.

3.2 Gaussian Process Distributional Regression

Consider estimating f from a model, yi = Ezi f + ε, where ε ∼ N (0, σ2), i ∈

{1, 2, · · · , n} and zi are the individual distributions. [Recall, Ez f =
∫︁ ∞
−∞ f (x)Pz(dx).]

Here, we change the distributional covariate notation from x to z, because we want
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to clearly distinguish the difference between individual distributions and their

observed samples. We will use zi for distributions and xij for samples. Typically,

one does not observe z, or Pz. Instead, one observes sample points, xi = {xij}mi
j=1,

and thus it is necessary to approximate the expectation with sample means. We

further add a Gaussian process prior for f to perform non-parametric regression:

yi ∼ N
(︄

1
mi

∑
j

f (xij), σ2

)︄
(3.3)

f ∼ GP(0, K) (3.4)

where K is a covariance kernel for the Gaussian process. Conveniently, 1
mi

∑j f (xij)

are jointly Gaussian distributed, since f follows a Gaussian process prior and

the posterior process for f given the observed data is also a Gaussian process.

Specifically, for given σ2 we have:

E[ f (s) | X, Y] = lT(s)(M + σ2)−1Y (3.5)

Cov[ f (s) | X, Y] = K(s, s)− lT(s)(M + σ2)−1l(s) (3.6)

where li(s) = 1
mi

∑j K(xij, s) and Mij =
1

mimj
∑uv K(xiu, xjv).

Assume the samples xij are i.i.d samples from some distribution. This can be

either a well motivated assumption or simply a useful working model for the

assumption that samples are exchangeable. Therefore, for any regression model,

yi = G(xi) + εi, where G is a mapping from the set {xij}j to a real number we

minimally require G to be invariant to any permutation of the second index (j).

From Zaheer et al., 2017 it is known that G({xij}j) = ρi

(︂
∑j ϕi(xij)

)︂
for some

functions ρi and ϕi. Our model then comes naturally with ρi(x) = x and ϕi =
1

mi
f
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shared across all subjects. The normalizing factor, 1
mi

, is essential in statistical

settings, since it is desirable to have different number of samples to contribute in

the same magnitude.

Our model is also invariant to any invertible transformations of the observed

xij. If only wij = h(xij) are observed, where h is invertible, Model 3.3 still holds for

{wi} with yi ∼ N
(︂

1
m ∑j f ◦ h−1(wij), σ2

)︂
. Therefore, the model is robust to fixed

systematic bias in the measurements of the covariates.

3.3 Low Rank Approximation

Posterior inferences for Gaussian process regression, like 3.3, is typically slow

when one has a large sample size, since it is O(n3) in complexity with n being

number of subjects. Distributional regression settings can be an even greater

computational challenge, since every subject involves many samples. When using

native posterior inference algorithms with Equations 3.5, 3.6 the overall time

complexity is O(n3 + n2m2), where m is the number of samples for each subject.

In the practical settings where an approximate posterior inference is acceptable,

one can perform a low rank approximation technique to accelerate the algorithm.

From Equations 3.5,3.6 we consider representing f as:

f (s) = ∑
i

wili(s), with w ∼ N
(︂

0, M−1
)︂

(3.7)

with basis li(s) = 1
mi

∑j K(xij, s) and covariance matrix Mij =
1

mimj
∑uv K(xiu, xjv).

The predicted ŷi =
1

mi
∑j f (xij) = ∑j Mijwj and we have the matrix representation

ŷ = Mw. Therefore, the posterior mode for ŵ could be found by minimizing

∥y − Mw∥2 /σ2 + w⊤Mw (3.8)
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Typical low rank method produced by the eigen approximation could then be

easily performed. Let M = UDU⊤ be the eigen decomposition of M. Fixing a

number, k, one would approximate M as UkDkU⊤
k where Uk consists of the first k

eigenvectors and Dk is the diagonal matrix of first k eigenvalues. Restricting w be

the column space of Uk with w = Ukwk, the optimization 3.8 becomes

min
wk

∥y − UkDkwk∥2 /σ2 + w⊤
k Dkwk (3.9)

Such optimization and its low rank approximation 3.9 is very similar to thin plate

splines Wood, 2003. Therefore, the entire process could be efficiently implemented

using typical spline regression packages, such as mgcv in the R language. Through

such approximations we could reduce the time complexity of the regression part

to O(n2k) using a suitable Lanczos algorithm. Unfortunately, the O(n2m2) part of

computing M cannot be avoided. Therefore, the algorithm is still costly with large

m. However, since Mij is just performing averages, the computation could be fully

paralleled. Also one could down-sample the observations, xij, or bin them into

tractable sizes.

3.4 Main Results

3.4.1 Notation and Assumptions

Suppose one has n observations, (zi, yi), where zi is the subject related distribu-

tions, which are assumed to be i.i.d., following some distributional process, Z , and

yi is the scalar outcome. In reality one cannot directly observe zi. Instead, one has

mi i.i.d. samples, xij, where xij ∈ Rd. For simplicity we will assume mi = m for all

i. However, it is easy to see that results do not change if one relaxes to mi ≥ m for
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all i. We will denote Dn = {{xij}j, yi}n
i=1 and Zn = {zi, yi}n

i=1. Further assume zi

are n random i.i.d. distributions that follow a distributional process, Z . Further yi

follows the model:

yi = Ezi f0 + εi (3.10)

where εi ∼ N (0, σ2) mutually independent with each other and all zi. We would

like to fit f0 from following model:

f ∼ GP(0, K) (3.11)

yi
i.n.d.∼ N

(︄
1
m

m

∑
j=1

f (xij), σ2

)︄
(3.12)

We now show that the the posterior risk:

Rn = E f0

∫︂
|| f − f0||2dΠn( f |Dn) (3.13)

contracts at optimal rate, where Πn is the posterior distribution, E f0 is relative to

the distribution of Dn and norm ∥·∥ can be either an empirical norm, ∥·∥n, or L2

norm ∥·∥2. The empirical norm is naturally defined as

∥ f ∥2
n =

1
n

n

∑
i=1

(Ezi f )2 (3.14)

Notice the expectation in this norm is respective to underlying distribution, zi,

which one can’t directly observe.

To achieve estimation error bound we need the true function, f0, to be regular

in some way. That is, f0 ∈ F for some functional space F with good properties.

Herein, we focus on0 the Hölder space Cα[0, 1]d for α > 0. When writing α = k + η,

the space Cα[0, 1]d is the space of all functions supported in [0, 1]d, whose partial

derivatives of orders (l1, · · · , ld) exist for all nonnegative integers l1, · · · , ld such
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that l1 + · · · + ld ≤ k and for which the highest order partial derivatives are

Hölder continuous with order η. ( f being Hölder continuous with order η if

| f (x)− f (y)| ≤ C ∥x − y∥η for all x, y and some constant C.)

Another functional space worth studying is the Sobolev space, Hα[0, 1]d, which

contains all [0, 1]d → R functions f such that

∫︂
Rd

(︂
1 + ∥λ∥2

)︂α ⃓⃓⃓
f̂ (λ)

⃓⃓⃓2
dλ < ∞ (3.15)

where f̂ is the Fourier transformation of f : f̂ (λ) = (2π)−d ∫︁ exp(iλTt) f (t)dt. We

will call a function, f , to be α-regular in [0, 1]d if f ∈ Cα[0, 1]d ∩ Hα[0, 1]d. α-regular

class will be the main functional class considered in our results.

As explained in the Introduction, one also needs constraints on the distribu-

tional process, zi ∼ Z . Denote S to be the support of Z . We assume the mean

measure µ : µ(A) = Ezi∼Z [zi(A)] has density µ(x) whose support its [0, 1]d and

is bounded away from 0.

Notice that our model is invariant to any invertiable transformation of zi.

Therefore, one can always map the support of µ to [0, 1]d. Without loss of generality,

we regard µ(x) = 1. And more importantly we will need properties that make Z

be able to separate regular functions:

Definition 3.4.1. We call a distributional process Z weakly separates a functional

vector space F if and only if ∀ f1, f2 ∈ F : Pz∼Z [Ez f1 = Ez f2] = 1 ⇔ f1 = f2.

And we call Z strongly separates F if and only if there exists constant C such that

Eµ f 2 ≤ CEz∼Z [(Ez f )2] for all f ∈ F . Here µ is the expectation of Z .

One can easily check that strong separability contains weak separability if

Eµ f 2 = 0 ⇒ f = 0 for f ∈ F . And using stick breaking representation, we can
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show that Dirichlet process DP(µ, α) strongly separates bounded functions with

constant C = 1 + α. Proof is shown in Lemma 2.

Lemma 2. Dirichlet process DP(µ, α) strongly separates the space of bounded functions

on [0, 1]d for any measure µ supported within it.

Proof. Using stick breaking representation, we know that the sample probability

mass function p(x) has the form

p(x) =
∞

∑
k=1

βk · δxk(x), (3.16)

where βk = β′
k ∏k−1

i=1 (1 − β′
i) for β′

k i.i.d follows Beta(1, α) and xk i.i.d follows µ

with δx the point mass at x. Also it is clear that the mean measure for DP(µ, α) is

just µ. Therefore for bounded f , we can directly calculate Ez∼DP(µ,α)[(Ez f )2]. We

have:

Ez∼DP(µ,α)[(Ez f )2] = Ez∼DP(µ,α)

⎡⎣(︄ ∞

∑
k=1

βk f (xk)

)︄2
⎤⎦

= Ez∼DP(µ,α)

[︄
∞

∑
ij

f (xi) f (xj)βiβ j

]︄

= Eµ f 2 · ∑
i

2
α(1 + α)

(︃
α

2 + α

)︃i
+ (Eµ f )2 ∑

i ̸=j
E[βiβ j]

≥ 1
1 + α

Eµ f 2

Therefore DP(µ, α) strongly separates the bounded functions with constant C =

1 + α.

In the following results we will use a special covariance kernel K for the
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Gaussian process prior, which is called Matérn kernel and is widely used in spatial

statistics and non-parameteric regression (and the corresponding Gaussian process

is called Matérn process). An order α Matérn kernel for d dimensional process has

the form:

K(s, t) =
∫︂

Rd

eiλT(s−t)

(1 + ∥λ∥2)α+d/2
dλ (3.17)

From Van Der Vaart and Van Zanten, 2011 we know that the sample paths of order

α Matérn process is α-regular in the sense that it belongs to Cβ[0, 1]d ∩ Hα[0, 1]d

for any β < α.

In the following sections we will use HK to denote the reproducing kernel

Hilbert space (RKHS) with kernel K and when it is not misleading H represents

the RKHS of the Gaussian process prior (RKHS of the Gaussian process covariance

kernel). And correspondingly ∥·∥H would be the RKHS-norm. We will assume

K(s, t) ≤ κ for all s, t. Such κ clearly exists for all Matérn kernel.

3.4.2 Fixed Design

Follow the notation and assumption in section 3.4.1. Given n data y1, · · · , yn

generated from model 3.10 and i.i.d samples xij ∼ zi. If f0 is continuous and

bounded within [0, 1]d, we can bound the posterior risk 3.13 by the so called

concentration function Vaart and Zanten, 2008:

ϕ f0(ε) = inf
h∈H:∥h− f0∥∞<ε

∥h∥2
H − log P (∥ f ∥∞ ≤ ε) (3.18)

where the probability P is relative to the Gaussian process prior of f and the

associated function:

Ψ f0(ε) =
ϕ f0(ε)

ε2 (3.19)
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whose order of magnitude has been well studied in Van Der Vaart and Van Zanten,

2011.

Theorem 3. If the distributional process Z weakly separates Cβ[0, 1]d ∩ Hβ[0, 1]d.

Then for any β-regular function f0 and model 3.10 with order α Matérn kernel. There

exists a constant C independent of n such that the posterior risk is controlled as

E f0

∫︂
|| f − f0||2n dΠn( f |Dn) ≤ Cn− 2 min(β,α)

2α+d (3.20)

given m = Ω(nCα,β), where Cα,β is a complex constant depend only on α and β. More

interestingly optimal rate can be achieved when α = β and m = Ω
(︃

n2+ d
β+

4β
2β+d

)︃
.

We will discuss the order Cα,β of m in detail in section 3.6.2.

3.4.3 Random Design

For estimation error bound, one could consider L2 norm correspond to the mean

measure µ of the distributional process Z . For any f that is µ-measurable with

following integral finite, we define:

∥ f ∥2
2 =

∫︂
f 2dµ (3.21)

Theorem 4. If the distributional process Z strongly separates Cβ[0, 1]d ∩ Hβ[0, 1]d.

Then for any β-regular function f0 and model 3.10 with order α Matérn kernel. There

exists a constant C independent with n such that the posterior risk is controlled as

E f0

∫︂
|| f − f0||22 dΠn( f |Dn) ≤ Cn− 2 min(β,α)

2α+d (3.22)

given m = Ω(nCα,β) and min(α, β) > d/2, where Cα,β is a complex constant depend

only on α and β. More interestingly optimal rate can be achieved when α = β and
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m = Ω
(︃

n2+ d
β+

4β
2β+d

)︃
.

When α = β we get the best rate as n−β/(2β+d) (after square root). This is

already the optimal rate if we don’t make any other assumptions on the distribu-

tional process Z . One can easily check that when z equals delta measure almost

surely, Z strongly separates all function space and our model degenerate to typical

Gaussian process regression. Therefore the optimal rate we can get is the rate for

estimating β-regular functions in typical nonparametric regression case, which is

n−β/(2β+d).

Notice that although we require α = β to achieve the optimal rate. We can

actually require smaller m with smaller α if the only goal is consistency. For

example, from section 3.6.2 we know that if β > α + 1/2, consistency only requires

m/n2 → ∞, instead with m/n2+d/β → ∞ if α = β.

3.5 Simulations

One difference of our method comparing to existing ones, like Póczos et al., 2013,

is that our expectation model does not require us to estimate the underlying

densities. Because the sample mean is the best estimator of the expectation in

non-parametric sense, we would also expect that our model to do better than

functional linear models with estimated densities. Also, by using full samples,

our model should have better asymptotic performance compared to the model

with only fixed amount landmark points. In this section we conduct a simulation

study to show that our method converges and have better rate compared to its

estimated densities alternatives and the Bayesian model in Law et al., 2018.
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We simulate our data as

zi ∼ DP (Unif[0, 1], 25) (3.23)

xij ∼ zi; εi ∼ N (0, 0.01) (3.24)

yi = Ezi( f ) + εi (3.25)

where f (x) = 10x · exp(−5x) is infinitely smooth within [0, 1].

We draw n by m xij samples from the distribution 3.24 and corresponding n

yi samples from 3.25, where n ranges from within {50, 100, 200, 300, 400} and m

ranges from within {50, 100, 250, 500, 1000, 2000}. We perform the exact posterior

inference using Equations 3.5, and 3.6, not the low rank approximations, and

subsequently compare the empirical risk
∫︁ ⃦⃦⃦

f − f̂
⃦⃦⃦2

2
dΠ( f̂ | {X, Y}) estimated

with 100 samples from the posterior process Π( f̂ | {X, Y}) for each combination

of n and m. For the Bayesian density regression model introduced in Law et al.,

2018, we use 10 and 50 evenly spaced landmark points in [0, 1] and set all other

hyperparameters as default ones. We also compare our method with a direct

density estimation alternative, that is to replace empirical expectation ∑j f (xij)/m

with Eẑi f in model 3.3, where ẑi is a density estimated from a kernel density

estimator.

yi ∼ N
(︂

Eẑi( f ), σ2
)︂

(3.26)

f ∼ GP(0, K) (3.27)

It is easy to see that this alternative is a functional linear regression in a Reproduc-

ing Kernel Hilbert Space with the same kernel K as in model 3.3.
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Figure 3.1: The empirical posterior risk for every combination of n and m under 100 runs,
where n stands for the number of subjects and m is the number of samples for each subject.
EXP label in method column stands for our model 3.3 using empirical expectation, and
KDE stands for its direct alternative 3.26 using kernel density estimated expectations.
BDR stands for the Bayes distribution regression method suggested in Law et al., 2018
where k is the number of landmark points.

We use a typical Gaussian kernel for all models, K(s, t) = exp
(︁
−(s − t)2/2l

)︁
,

where l is set to 0.25. We run every setting 100 independent times and report

the final mean empirical risk with confidence intervals. The results are shown in

Figure 3.1. It is clear that the algorithm converges at a polynomial rate when n is

increased for sufficiently large m. Furthermore, our method is significantly better

and have sharper rates than the Bayesian density regression model (Law et al.,

2018) and the kernel density estimation alternative.
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3.6 Proofs

3.6.1 Risk Decomposition

The way we prove the theorems is to do risk decomposition. Consider the Gaus-

sian process model with unknown true distributions zi:

f ∼ GP(0, K) (3.28)

yi ∼ N
(︂

Ezi f , σ2
)︂

(3.29)

the posterior of which is denoted as Πn( f |Zn). Then the risk term 3.13 can be

decomposed into:

Rn = R0
n +R1

n = E f0

∫︂
|| f − f0||2dΠn( f |Zn)+

(︃
E f0

∫︂
|| f − f0||2(dΠn( f |Dn)− dΠn( f |Zn))

)︃
(3.30)

where ∥·∥ can be empirical norm ∥·∥n and L2 norm ∥·∥2. We can bound R0
n using

similar method as in Van Der Vaart and Van Zanten, 2011 and bound R1
n through

a direct computation.
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3.6.2 Bound R1
n for L2 norm ∥·∥2

A naive bound for R1
n is to directly calculate it out:

R1
n = E f0

∫︂
|| f − f0||2(dΠn( f |Dn)− dΠn( f |Zn))

= E f0

∫︂
[0,1]d

(︂
E f |Dn( f − f0)

2(s)− E f |Zn( f − f0)
2(s)

)︂
ds

= E f0

∫︂
[0,1]d

(︂
E f |Dn( f 2(s)− 2 f (s) f0(s))− E f |Zn( f 2(s)− 2 f (s) f0(s))

)︂
ds

= E f0

∫︂
[0,1]d

Var( f (s)|Dn)− Var( f (s)|Zn) + E2( f (s)|Dn)− E2( f (s)|Zn)

− 2 f0(s) (E( f (s)|Dn)− E( f (s)|Zn)) ds

= E f0

∫︂
[0,1]d

V(s) + E2(s)− 2 f0(s)E1(s)ds

where V(s) = Var( f (s)|Dn)−Var( f (s)|Zn), E1(s) = Eε [E( f (s)|Dn)− E( f (s)|Zn)]

and E2(s) = Eε

[︁
E2( f (s)|Dn)− E2( f (s)|Zn)

]︁
. All exchange of integral and ex-

pectation above should be legal because all functions are clearly bounded by a

constant if fixing n.

Borrowing similar notation as in Szabó et al., 2016; Caponnetto and De Vito,

2007. Let H be the RKHS of the GP kernel K with inner product ⟨·, ·⟩. Let

µz(s) =
∫︂

K(s, t)dz(t)

be the kernel mean embedding of distribution z. Denote:

Tz =
1
n

n

∑
i=1

µzi⟨µzi , ·⟩, gz =
1
n

n

∑
i=1

yiµzi , ϕz =
1
n

n

∑
i=1

µzi ⊗ µzi

where ( f1 ⊗ f2)(s, t) = f1(s) f2(t) and zi, yi are the true density and response for
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subject i. Naturally, H⊗H would be the closure of set { f1 ⊗ f2 : f1 ∈ H, f2 ∈ H},

equipped with inner product as continuous extension of ⟨ f1 ⊗ f2, g1 ⊗ g2⟩ =

⟨ f1, g1⟩⟨ f2, g2⟩. Then, we know that gz ∈ H and Tz : H → H is Hermitian.

Similarly, one can define Tẑ, gẑ, ϕẑ by changing the true densities, zi, to empirical

densities from samples, {xij}, and they have the same properties. Following this

notation, Gaussian processes has following posterior Caponnetto and De Vito,

2007:

f | Zn ∼ GP
(︂
(Tz + σ2

n)
−1gz, K −

[︂
(Tz + σ2

n)
−1 ⊗ Id

]︂
ϕz

)︂
(3.31)

f | Dn ∼ GP
(︂
(Tẑ + σ2

n)
−1gẑ, K −

[︂
(Tẑ + σ2

n)
−1 ⊗ Id

]︂
ϕẑ

)︂
(3.32)

where σ2
n = σ2/n and Id is the identity operator. The operator T1 ⊗ T2 : H⊗H →

H⊗H is naturally defined through continuous extension of (T1 ⊗ T2)( f1 ⊗ f2) =

T1( f1)⊗ T2( f2). Denote ẑi as the empirical distribution from samples xij, fz =

(Tz + σ2
n)

−1gz and fẑ = (Tẑ + σ2
n)

−1gẑ. Also Mz =
[︁
(Tz + σ2

n)
−1 ⊗ Id

]︁
ϕz and

Mẑ =
[︁
(Tẑ + σ2

n)
−1 ⊗ Id

]︁
ϕẑ. Therefore, Mz, Mẑ ∈ H⊗H. Now we can bound R1

n

step by step. In the following sections, we denote Ks as the function Ks(t) = K(s, t).

3.6.2.1 Step 1: Bound V(s)

We have V(s) = Mz(s, s)− Mẑ(s, s). It can be observed that

Mz(s, s) = ⟨Mz, Ks ⊗ Ks⟩ =
⟨︄

1
n

n

∑
i=1

(Tz + σ2
n)

−1µzi⟨µzi , Ks⟩, Ks

⟩︄

=
⟨︂
(Tz + σ2

n)
−1TzKs, Ks

⟩︂
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The second equation comes from the definition of H⊗H. Therefore,

|V(s)| =
⃓⃓⃓⟨︂
((Tz + σ2

n)
−1Tz − (Tẑ + σ2

n)
−1Tẑ)Ks, Ks

⟩︂⃓⃓⃓
≤ κ

⃦⃦⃦
(Tz + σ2

n)
−1Tz − (Tẑ + σ2

n)
−1Tẑ

⃦⃦⃦
L(H)

= κσ2
n

⃦⃦⃦
(Tẑ + σ2

n)
−1 − (Tz + σ2

n)
−1
⃦⃦⃦
L(H)

= κσ2
n

⃦⃦⃦
(Tẑ + σ2

n)
−1(Tz − Tẑ)(Tz + σ2

n)
−1
⃦⃦⃦
L(H)

≤ κ

σ2
n
∥(Tz − Tẑ)∥L(H)

for operator norm ∥·∥L(H). Recall that κ is the upper bound for the kernel K. To

bound ∥(Tz − Tẑ)∥L(H), we have:

∥Tz − Tẑ∥2
L(H) ≤

1
n

n

∑
i=1

⃦⃦
µzi⟨µzi , ·⟩ − µẑi⟨µẑi , ·⟩

⃦⃦2
L(H)

And for every
⃦⃦

µzi⟨µzi , ·⟩ − µẑi⟨µẑi , ·⟩
⃦⃦

, apply it to arbitrary function f .

⃦⃦
µzi⟨µzi , f ⟩ − µẑi⟨µẑi , f ⟩

⃦⃦2
H =

⃦⃦
(µzi − µẑi)⟨µzi , f ⟩+ µẑi⟨µzi − µẑi , f ⟩

⃦⃦2
H

≤ ∥ f ∥2
H

(︂(︂
∥µzi∥

2
H +

⃦⃦
µẑi

⃦⃦2
H

)︂ ⃦⃦
µzi − µẑi

⃦⃦2
H

)︂
≤ 2κ ∥ f ∥2

H
⃦⃦

µzi − µẑi

⃦⃦2
H
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Therefore, ∥Tz − Tẑ∥2
L(H) ≤ 2κ

n ∑i
⃦⃦

µzi − µẑi

⃦⃦2
H. And,⃓⃓⃓⃓

E

∫︂
[0,1]d

V(s)ds
⃓⃓⃓⃓
≤ κ

σ2
n

E ∥(Tz − Tẑ)∥L(H) ≤
√

2κ3/2

σ2
n

√︂
E
⃦⃦

µzi − µẑi

⃦⃦2
H

=

√
2κ3/2

σ2
n

⌜⃓⃓⎷EziExij

⃦⃦⃦⃦
⃦ 1

m ∑
j

Kxij − µzi

⃦⃦⃦⃦
⃦

2

H

=

√
2κ3/2

σ2
n

√︄
Ezi

[︃
1
m

Exij

⃦⃦⃦
Kxij − µzi

⃦⃦⃦2

H

]︃
≤ 2

√
2κ2

σ2
n
√

m
(3.33)

3.6.2.2 Step 2: Bound E1(s)

One main difficulty for the bound here is that it is not assumed f0 lies in the RKHS

of kernel K. In fact, when the optimal rate is achieved with β = α, the RKHS HK

contains all (β + 1/2)-regular functions, implying f0 ̸∈ HK.

In the situation where f0 ̸∈ HK, from Lemma 4 of Van Der Vaart and Van

Zanten, 2011 it is known that for an order α Matérn kernel K and β-regular f0 with

β ≤ α one can always find h ∈ HK such that:

inf
∥h− f0∥∞<ε

∥h∥2
H ≤ Cα

(︃
1
ε

)︃(2α−2β+d)/β

(3.34)

for arbitrary small ε and constant Cα depending only on α and f0. Now, one can

use Equation 3.34 to find a f γ
0 ∈ H such that

⃦⃦
f γ
0 − f0

⃦⃦
∞ ≤ n−γ and

⃦⃦
f γ
0

⃦⃦
H ≤

2Cαn(2α−2β+d)γ/2β. We determine γ at the end of the proof. Next, we have Eεi yi =

Ezi f0 = Ezi f γ
0 +Ezi( f0 − f γ

0 ) = ⟨µzi , f γ
0 ⟩+Ezi( f0 − f γ

0 ). Denote ri = Ezi( f0 − f γ
0 ),
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|ri| ≤ n−γ and:

Eε(Tz + σ2
n)

−1gz = (Tz + σ2
n)

−1

(︄
1
n ∑

i
(⟨µzi , f γ

0 ⟩µzi + riµzi)

)︄

= (Tz + σ2
n)

−1Tz f γ
0 +

1
n ∑

i
ri(Tz + σ2

n)
−1µzi

Similarly:

Eε(Tẑ + σ2
n)

−1gẑ = (Tẑ + σ2
n)

−1

(︄
1
n ∑

i
(⟨µzi , f γ

0 ⟩µẑi + riµẑi)

)︄

= (Tẑ + σ2
n)

−1Tẑ f γ
0 +

1
n ∑

i
(ri + di)(Tẑ + σ2

n)
−1µẑi

where di = ⟨µzi − µẑi , f γ
0 ⟩. Therefore,

|E1(s)| = |⟨E1, Ks⟩| ≤
√

κ ∥E1∥H

≤
√

κ
⃦⃦⃦
(Tz + σ2

n)
−1Tz − (Tẑ + σ2

n)
−1Tẑ

⃦⃦⃦
L(H)

⃦⃦
f γ
0

⃦⃦
H

+
√

κ

⃦⃦⃦⃦
⃦ 1

n ∑
i

di(Tẑ + σ2
n)

−1µẑi

⃦⃦⃦⃦
⃦
H
+
√

κ

⃦⃦⃦⃦
⃦ 1

n ∑
i

ri(Tz + σ2
n)

−1(µzi − µẑi)

⃦⃦⃦⃦
⃦
H

+
√

κ

⃦⃦⃦⃦
⃦ 1

n ∑
i

ri((Tz + σ2
n)

−1 − (Tẑ + σ2
n)

−1)µẑi

⃦⃦⃦⃦
⃦
H

≤
(︄

2Cα
√

κ

σ2
n

∥Tz − Tẑ∥L(H) +
2Cακ

σ2
nn ∑

i

⃦⃦
µzi − µzî

⃦⃦
H

)︄
n

(2α−2β+d)γ
2β

+

(︄√
κ

σ2
nn ∑

i

⃦⃦
µzi − µzî

⃦⃦
H +

κ

σ4
n
∥Tz − Tẑ∥L(H)

)︄
n−γ
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Using the bounds derived in the previous step, it follows that:⃓⃓⃓⃓
E

∫︂
[0,1]d

2 f0(s)E1(s)ds
⃓⃓⃓⃓
≤ 16C0Cακ3/2

σ2
n
√

m
n

(2α−2β+d)γ
2β +

4C0κ

σ2
n
√

m
n−γ +

4
√

2κ2

σ4
n
√

m
n−γ

where C0 is the upper bound of | f0|, which must exists, since it is assumed f0

is regular (hence continuous) in a compact set. The rate can be improved when

f0 ∈ HK (β ≥ α + 1/2), in which case f γ
0 can be f0, making ri = 0 and

⃦⃦
f γ
0

⃦⃦
constant. Finally: ⃓⃓⃓⃓

E

∫︂
[0,1]d

2 f0(s)E1(s)ds
⃓⃓⃓⃓
≤ 16C0Cακ3/2

σ2
n
√

m

3.6.2.3 Step 3: Bound E2(s)

Using the same notation as in Step 2, in the situation f0 ̸∈ HK, denote:

A = (Tz + σ2
n)

−1Tz f γ
0 , B =

1
n ∑

i
εi(Tz + σ2

n)
−1µzi , C =

1
n ∑

i
ri(Tz + σ2

n)
−1µzi

Â = (Tẑ + σ2
n)

−1Tẑ f γ
0 , B̂ =

1
n ∑

i
εi(Tẑ + σ2

n)
−1µẑi , Ĉ =

1
n ∑

i
(ri + di)(Tẑ + σ2

n)
−1µẑi

Then we have E2 = Eε

[︁
(A + B + C)2 − (Â + B̂ + Ĉ)2]︁. It can be seen that the

cross term Eε

[︁
B(A + C) + B̂(Â + Ĉ)

]︁
= 0. Because εi is mean 0 and independent

of any zi and xij, therefore,

E2 = (A + C + Â + Ĉ)(A − Â + C − Ĉ) + Eε

[︂
B2 − B̂2

]︂
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For the first part

|(A + C + Â + Ĉ)(A − Â + C − Ĉ)|(s) = |⟨A + C + Â + Ĉ, Ks⟩⟨A − Â + C − Ĉ, Ks⟩|

≤ κ
(︁
∥A∥H +

⃦⃦
Â
⃦⃦
H + ∥C∥H +

⃦⃦
Ĉ
⃦⃦
H
)︁
∥E1∥H

≤ κ ∥E1∥H

(︄
2
⃦⃦

f γ
0

⃦⃦
H +

2
√

κ

σ2
n

n−γ +

√
κ
⃦⃦

f γ
0

⃦⃦
H

σ2
nn ∑

i

⃦⃦
µzi − µẑi

⃦⃦
H

)︄

One can use the same bound for E1 and notice that:

E

[︄
∥Tz − Tẑ∥L(H)

n ∑
i

⃦⃦
µzi − µẑi

⃦⃦
H

]︄
≤
√︂

E ∥Tz − Tẑ∥2
L(H) E

⃦⃦
µzi − µẑi

⃦⃦2
H = O

(︃
1
m

)︃

E

[︄(︄
1
n ∑

i

⃦⃦
µzi − µẑi

⃦⃦
H

)︄(︄
1
n ∑

i

⃦⃦
µzi − µẑi

⃦⃦
H

)︄]︄
≤
√︂

E
⃦⃦

µzi − µẑi

⃦⃦2
H E

⃦⃦
µzi − µẑi

⃦⃦2
H = O

(︃
1
m

)︃

For the second part, we have (notice that (Tz + σ2
n)

−1 is Hermitian):

Eε[B2](s) =
1
n2 ∑

i
σ2⟨(Tz + σ2

n)
−1µzi , Ks⟩⟨µzi , (Tz + σ2

n)
−1Ks⟩

=
σ2

n
⟨(Tz + σ2

n)
−2TzKs, Ks⟩

and

|Eε[B2 − B̂2
](s)| ≤ σ2κ

n

⃦⃦⃦
(Tz + σ2

n)
−2Tz − (Tẑ + σ2

n)
−2Tẑ

⃦⃦⃦
L(H)

≤ κσ2
n

⃦⃦⃦
((Tz + σ2

n)
−1 − (Tẑ + σ2

n)
−1)(Tz + σ2

n)
−1Tz

⃦⃦⃦
L(H)

+ κσ2
n

⃦⃦⃦
(Tz + σ2

n)
−1((Tz + σ2

n)
−1Tz − (Tẑ + σ2

n)
−1Tẑ)

⃦⃦⃦
L(H)

≤ 2κ

σ2
n
∥Tz − Tẑ∥L(H)
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Therefore, using the bound in Equation 3.33 and ignoring the constant term,

we have (recall that
⃦⃦

f γ
0

⃦⃦
H = O(n(2α−2β+d)γ/2β)):⃓⃓⃓⃓

E

∫︂
[0,1]d

E2(s)ds
⃓⃓⃓⃓
≤ C(α, κ, f0)

(︃
1

σ2
n
√

m
n

(2α−2β+d)γ
β +

1
σ4

n
√

m
n−γ+

(2α−2β+d)γ
2β (3.35)

+
1

σ6
n
√

m
n−2γ +

1
σ4

nm
n

(2α−2β+d)γ
β +

1
σ6

nm
n−γ+

(2α−2β+d)γ
2β

)︃
(3.36)

for some constant C(α, κ, f0) depending only on α, κ, f0.

Similarly, the rate can be improved if f0 ∈ HK, where f γ
0 can directly be f0,

making ri = 0 and
⃦⃦

f γ
0

⃦⃦
constant. Thus:⃓⃓⃓⃓

E

∫︂
[0,1]d

E2(s)ds
⃓⃓⃓⃓
≤ C(κ, f0)

σ2
n
√

m
(3.37)

given σ2
n
√

m → ∞. Notice again that σ2
n = σ2/n.

3.6.2.4 Combine Together

Combining all 3 steps above it follows that:

R1
n = O

(︃
n√
m

)︃
(3.38)

if f0 ∈ HK (β ≥ α + 1/2). If f0 ̸∈ HK, one gets a more complex, and worse, rate as:

R1
n = O

⎛⎝n1+ (2α−2β+d)γ
2β

√
m

+
n2−γ+

(2α−2β+d)γ
2β

√
m

+
n3−2γ

√
m

⎞⎠ (3.39)

given n/
√

m → 0. Therefore, when α = β, setting γ = 1 we get that R1
n =

O(n−2β/(2β+d)) if m = Ω
(︃

n2+ d
β+

4β
2β+d

)︃
.
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3.6.3 Bound R1
n for empirical norm ∥·∥n

Denote Ẑ as the empirical distributional process support only on n points of zi.

We have:

R1
n = E f0

∫︂
∥ f − f0∥2

n (dΠn( f |Dn)− dΠn( f |Zn))

= E f0

∫︂
Ez∼Ẑ [Ez( f − f0)Ez( f − f0)](dΠn( f |Dn)− dΠn( f |Zn))

= E f0Ez∼Ẑ

∫︂ [︃∫︂
( f − f0)(s)( f − f0)(t)dz(s)dz(t)

]︃
(dΠn( f |Dn)− dΠn( f |Zn))

= E f0Ez∼Ẑ

∫︂
(E f |Dn − E f |Zn)[ f (s) f (t)]− 2 f0(s)(E f |Dn − E f |Zn)[ f (t)] dz(s)dz(t)

It can then be seen that one can use exactly the same method as in Section 3.6.2

to get the same bound as for term |(E f |Dn − E f |Zn)[ f (s) f (t)] − 2 f0(s)(E f |Dn −

E f |Zn)[ f (t)]| with every s, t pair and therefore we can get the same overall bounds

as for ∥·∥2.

3.6.4 Bound R0
n

We use the method described in Van Der Vaart and Van Zanten, 2011 to bound

R0
n, by extending it to distributional covariates settings. To do that we need to

rewrite the model 3.28-3.29 into a typical Gaussian process regression in metric

space. Consider:

yi = F0(zi) + εi (3.40)

where zi is the individual distribution for subject i and F0 is an element in the

linear space B. If there exists an bijection π from B to C0: the bounded continuous

function on [0, 1]d and ∀F ∈ B, z ∈ S : F(z) = Ezπ(F). Naturally we give B
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a norm that ∥F∥B = ∥π(F)∥∞ and it is clear that |F(z)| ≤ ∥F∥B for all z. Note.

when it is not misleading, we will also denote π(F) simply as f . Similarly, f0 for

π(F0) and any other super-sub-script.

It is clear that if Z weakly separates C0, π would be an isomorphism between

B and C0. Because π would be a bijection with ∥F∥B = ∥π(F)∥∞. Hence, B is a

separable Banach space.

Now consider a kernel K on set S such that K(z1, z2) = ⟨µz1 , µz2⟩H where

µz =
∫︁

K(·, s)dz(s) is the kernel mean embedding of z. Clearly K satisfies the

kernel property. Denote the RKHS of K to be HK. Then, HK is a subspace of B

when using a Matérn kernel for K. From Lemma 5, we also have π(HK) = H,

with ∥h∥HK
= ∥π(h)∥H.

Lemma 5. Using the kernel K and projection π defined above, and HK be the RKHS

from K, we have π(HK) = H with ∥h∥HK
= ∥π(h)∥H if Z weakly separates C0.

Proof. First, HK is the Hilbert space spanned by K(z, ·) = ⟨µz, µ(·)⟩H and it is

easy to see π(K(z, ·)) = µz =
∫︁

K(s, ·)dz(s). Because ⟨µw, g⟩H = Ew f for any

distribution w and function g ∈ H. Also ∥K(z, ·)∥HK
= K(z, z) =

∫︁
K(s, t)dz ⊗

dz = ∥π(K(z, ·))∥H. Since π is an isomorphism between B and C0. We know that

π(HK) is a subspace in H spanned by {µz : z ∈ S} with ∥π(h)∥H = ∥h∥HK
.

Now decompose H = π(HK)⊕ π(HK)⊥, for any f ∈ π(HK)⊥ we have:

∀z ∈ S : ⟨µz, f ⟩H = Ez f = 0

but by our assumption on the richness of S , this can happen only when f = 0.

Therefore π(HK)⊥ = 0 hence H = π(HK).
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We now show that our model 3.28-3.29, with known individual distributions,

is equivalent to Gaussian process regression:

F ∼ GP(0, K) (3.41)

yi ∼ N (F(zi), σ2) (3.42)

We show that π−1( f )|Zn is the same distribution as F|Zn. Consider that f ∼

GP(0, K) ⇒ π−1( f ) ∼ GP(0, K). Furthermore, by definition, Ezi f = π−1( f )(zi)

for all zi. Therefore, from the uniqueness of Gaussian processes it follows that

π−1( f )|Zn ∼ F|Zn.

Now, define the square operator, B → B, as F2 = π−1(π(F)2), where square

in C0 is the typical point-wise square. Since the square of bounded continuous

functions is still bounded and continuous, this operator in B is well defined.

Obviously, F2(z) = Ezπ(F)2. Define the L2 norm in B as ∥F∥2
2 = F2(µ), where µ

is the mean measure of zi (assumed to be Unif(0, 1)). It is clear that ∥F∥2 ≤ ∥F∥B.

Similarly define the empirical norm in B as ∥F∥2
n = 1

n ∑n
i (F(zi))

2. It can be shown

that the risk, R0
n, agrees for both models under ∥·∥2 and ∥·∥n. For example, for

∥·∥2:

R0
n = E f0

∫︂
∥ f − f0∥2

2 dΠn( f |Zn) = E f0

∫︂
Eµ( f − f0)

2dΠn( f |Zn)

= E f0

∫︂ ⃦⃦⃦
π−1( f )− F0

⃦⃦⃦2

2
dΠn( f |Zn) = E f0

∫︂
∥F − F0∥2

2 dΠn(F|Zn)

Using Theorem 1 in Van Der Vaart and Van Zanten, 2011 we can bound the risk

term R0
n in the fixed design setting with Ψ−1

F0
(n)2, where F ∼ GP(0, K) and:

ε2ΨF0(ε) = inf
h∈HK:||h−F0||B<ε

||h||2HK
− log P(||F||B < ε) (3.43)
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Recall the definition of HK and B, and consider f ∼ GP(0, K) we have:

P(∥ f ∥∞ ≤ ε) = P
(︂⃦⃦⃦

π−1( f )
⃦⃦⃦
B
≤ ε
)︂
= P(||F||B < ε)

inf
h∈H:||h− f0||∞<ε

||h||2H = inf
h∈H:||π−1(h)−F0||B<ε

||π−1(h)||2HK
= inf

h∈HK:||h−F0||B<ε
||h||2HK

Therefore, ΨF0(ε) = Ψ f0(ε) with:

ε2Ψ f0(ε) = inf
h∈H:||h− f0||∞<ε

||h||2H − log P(|| f ||∞ < ε) (3.44)

which implies one obtains the same rates as in Theorem 5 of Van Der Vaart and

Van Zanten, 2011, which is n−2 min(α,β)/(2α+d).

Strong separation is needed for the estimation bound because the empirical

norm, ∥ f ∥2
n = 1

n ∑i(Ezi f )2, converges to Ez∼Z [(Ez f )2], not to ∥ f ∥2
2, introducing a

gap between the empirical bound and estimation bound. However, if Z strongly

separates π(B) with constant C, then ∥ f ∥2
2 becomes equivalent with Ez∼Z [(Ez f )2].

Furthermore, the proof for Theorem 2 in Van Der Vaart and Van Zanten, 2011 can

be continued by observing:

P(∥ f − fε∥2 ≥ 2C ∥ f − fε∥n) ≤ P(∥ f − fε∥Z ≥ 2 ∥ f − fε∥n)

≤ e−(n/5)∥ f− fε∥2
Z/∥ f− fε∥2

∞ ≤ e−(n/5C2)∥ f− fε∥2
2/∥ f− fε∥2

∞

for any f and fε. In such case one obtains the same rate as n−2 min(α,β)/(2α+d), given

min(α, β) > d/2.
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Chapter 4

Accelerating fixed-point algorithms in
statistics and data science: A
state-of-art review

Bohao Tang 1, Nicholas Henderson2, Ravi Varadhan3

4.1 Introduction

Computational problems in science and mathematics are often solved using it-

erative algorithms, which produce a sequence of real-valued vectors converging

to the solution of interest. Examples include solving systems of linear and non-

linear equations, numerical solutions of differential equations, approximation of

integrals, and minimization of multivariate functions. Parameter estimation in

many practical problems in statistics and data science can be ultimately reduced

to a specific optimization problem often involving parameter constraints. To solve

such optimization problems, various iterative algorithms have been developed

1 Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
2 Department of Biostatistics, University of Michigan
3 Quantitative Sciences Division, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins

University
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including the expectation-maximization (EM) algorithm (Dempster, Laird, and

Rubin, 1977), the majorization-minimization (MM) algorithm (Hunter and Lange,

2004), and gradient based methods like gradient descent (GD) and proximal gradi-

ent descent (Boyd, Boyd, and Vandenberghe, 2004). These methods are general

and easy to use, and they can all be regarded as fixed-point iteration algorithms. A

major appeal of these algorithms is their stability and their ability to readily handle

high-dimensional problems which is a main reason for their surge in popularity

for modern applications. However, a characteristic weakness of these algorithms

is their potential slow convergence, i.e., the vector sequence produced by the

fixed-point iterative algorithm, xn+1 = F(xn), may converge very slowly (if it

converges) to the solution x∗, severely limiting their effective use in solving real

problems. Hence, it is desirable to have tools available that can accelerate the

convergence of the sequence {xn}. Please refer to Supplementary Material for a

general, theoretical discussion of the rate of convergence of fixed-point iterations.

As highlighted in Varadhan and Roland, 2008, an acceleration scheme should

possess certain key properties in order to be an effective and practical tool for

high-dimensional optimization problems. It should accelerate the convergence of

the original iterative algorithm (fast local convergence); it should converge to the

solution from any reasonable starting value (robust global convergence), provided,

of course, that the base algorithm itself is convergent; it should have minimal

storage/memory requirements (applicability to high-dimensional problems); and

it should require minimal problem-specific tuning (off-the-shelf usability). The

minimal storage requirement eliminates Newton-type algorithms which make

use of full second-order information. In this paper, we examine several recently
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developed acceleration schemes that satisfy these listed requirements. The ac-

celeration schemes discussed include SQUAREM (Varadhan and Roland, 2008),

Anderson acceleration and DAAREM (Henderson and Varadhan, 2019), Quasi-

Newton (Zhou, Alexander, and Lange, 2011), Nesterov acceleration with restarts

(O’donoghue and Candes, 2015), and Parabolic-EM (Berlinet and Roland, 2009).

The paper is organized as follows. First, in the next section, we describe

several well-known fixed-point iterations and discuss their theoretical convergence

properties. In Section 4.3, we introduce and describe the accelerating methods to

be studied. In Section 4.5, we test the performance of each of these acceleration

methods in a range of practical problems. In Section 4.4, implementation details

and available R packages are described, and in last Section, we discuss the results

and give strategies for choosing an acceleration scheme for a given problem at

hand.

4.2 Popular iterative algorithms and their convergence

4.2.1 MM algorithm

The MM in the MM algorithm stands for “Majorization-Minimization” or “Minorization-

Maximization”, depending on whether the particular optimization problem is a

minimization or maximization problem. The MM algorithm actually describes

a family of algorithms that are implemented by creating a surrogate function

that majorizes (minorizes) the objective function of interest and optimizing this

surrogate function in each iteration. A key feature of MM algorithms is that the

objective function will increase (decrease)in every iteration. See Hunter and Lange,

2004 for a general description of MM algorithms.
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A function g(x|xk) is called a minorized version of the objective function f at

xk if it satisfies the following two conditions

∀x : g(x|xk) ≤ f (x)

g(xk|xk) = f (xk).

Similarly, g(x|xk) will be called a majorized version of f at xk if −g(x|xk) is a

minorized version of − f . An MM maximization algorithm updates the current

iterate xk by maximizing the minorizing function g(x|xk). If we define F to be the

argmax operator for g(x|xk), then we can express the MM iteration as

xk+1 = argmax
x

g(x|xk) =: F(xk). (4.1)

The fixed-point iteration (4.1) generates a sequence which is monotone with

respect to the objective function f ; that is, we are guaranteed to have f (x0) ≤

f (x1) ≤ f (x2) ≤ .... This is due to the fact that f (xk+1) ≥ g(xk+1|xk) ≥ g(xk|xk) =

f (xk), and hence, one will get a strict increase in the objective function whenever

g(xk+1|xk) ̸= g(xk|xk).

If x∗ denotes an optimal point of f , then for xk close to x∗, we have the following

local approximation

xk+1 − x∗ ≈ dF(x∗)(xk − x∗),

where dF(x∗) is the Jacobian of F at x∗. It can be shown that dF(x∗) is given by

dF(x∗) = I − [d2g(x∗|x∗)]−1d2 f (x∗), (4.2)

where d2 f (x∗) and d2g(x∗|x∗) denote the Hessian matrices of f (x) and g(x|x)

respectively (with the derivatives in d2g(x∗|x∗) being taken with respect to the
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first argument of g(x|x)). Therefore, an MM algorithm has linear convergence

with a rate related to the largest eigenvalue of the Jacobian in (4.2), and the value

of this Jacobian depends on both the objective function and choice of surrogate

function. Globally, if the objective function f is strictly convex or concave, an MM

algorithm will converge to the unique optimal point, assuming it exists. Otherwise,

the MM algorithm will converge to one of the stationary points.

4.2.1.1 The EM algorithm as a special case of MM

EM algorithms are used to find the value of a parameter vector x which maxi-

mizes a log-likelihood function ℓ(x) = log p(Y|x) of interest, where Y denotes the

observed data vector and p(·|x) is the probability distribution for the observed

data that is parameterized by x. To develop an EM algorithm for maximizing

ℓ(x), one introduces a vector of unobserved latent data U and a probability dis-

tribution p(Y, U|x) for (Y, U) which is also parameterized by x. Because ℓ(x)

can be decomposed as log p(Y|x) = log p(Y, U|x)− log p(U|Y, x) and log p(Y|x)

does not depend on U, if we take the expectation of log p(Y|x) with respect to

the conditional distribution [U|Y, xk] where xk is the current iterate of the EM

algorithm, we obtain

log p(Y|x) = EU|Y,xk
{log p(Y, U|x)} − EU|Y,xk

{log p(U|Y, x)}

= Q(x|xk) + H(x|xk). (4.3)

In (4.3), Q(x|xk) is often referred to as the “Q-function”, and computing it is

referred to as the “E-step” of the EM algorithm. The term H(x|xk) is the cross en-

tropy of the conditional distribution [U|Y, x] relative to the conditional distribution

79



[U|Y, xk].

After completing the “E-step”, xk+1 is found by maximizing the Q-function

Q(x|xk) with respect to x, namely,

xk+1 = arg max
x

Q(x|xk) =: F(xk).

Computing xk+1 by maximizing Q(x|xk) is usually referred to as the “M-step” of

an EM algorithm.

To see why the EM algorithm is a special case of the MM algorithm, note first

that it directly follows from Jensen’s inequality that

H(x|xk)− H(xk|xk) = EU|Y,xk

[︂
log{p(U|Y, θ)/p(U|Y, xk)}

]︂
≤ log

[︂
EU|Y,xk

{︁
p(U|Y, θ)/p(U|Y, xk)}

]︂
= 0.

and hence Q(x|xk) + H(xk|xk) ≤ log p(Y|x) for any value of x. In other words,

Q(x|xk) + H(xk|xk) is a minorized version of the log-likelihood log p(Y|x). Since

H(xk|xk) is a positive constant that does not depend on x, maximizing Q(x|xk) +

H(xk|xk) is equivalent to maximizing the Q-function. Hence, we can regard the EM

algorithm as an MM algorithm with minorization function Q(x|xk) + H(xk|xk).

4.2.2 Gradient based algorithms

4.2.2.1 Gradient descent

Consider the following optimization problem:

min
x

f (x) (4.4)
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for a smooth function f that has all first order derivatives with ∇ f (x) = ( ∂ f (x)
∂x1

, . . . , ∂ f (x)
∂xp

)

denoting the gradient of f at x. Gradient descent is an iterative algorithm that

always updates the current iterate xk linearly in the direction where f decrease the

fastest, namely, the negative gradient −∇ f (xk). In particular, for a given choice of

step size or learning rate tk, the gradient descent update of xk is given by

xk+1 = xk − tk∇ f (xk). (4.5)

Gradient descent may also be interpreted in the following way. At each step,

we do not directly minimize the original function f , but instead, we minimize its

first order approximation fk(x) around xk which is given by

fk(x) = f (xk) +∇ f (xk)
T(x − xk) +

1
2tk

||x − xk||2, (4.6)

where || · || is the Euclidean norm. One can directly check that the minimizer of

the function fk is equal to xk+1 in (4.5).

4.2.2.2 Proximal gradient descent

Optimization problem (4.4) is not general enough to handle optimization problems

that have non-smooth terms. In such cases, one might consider the following

generalization of (4.4)

min
x

f (x) + h(x), (4.7)

where, again, f is assumed to be smooth up to first order but h is instead a non-

smooth function. As an example of (4.7), the objective function used in LASSO

regression (Tibshirani, 1996) can be expressed as a sum of a smooth function and

the non-smooth L1 norm term.
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Using the same reasoning used to obtain approximation (4.6), we can approxi-

mate the target f (x) + h(x) at each step by

( f + h)k(x) = f (xk) +∇ f (xk)
T(x − xk) +

1
2tk

||x − xk||2 + h(x)

=
1

2tk
||x − xk + tk∇ f (xk)||2 + h(x) + Const, (4.8)

where Const is a constant term that does not depend on x. In step k, the proximal

gradient descent update xk+1 is defined as the minimizer of the approximation

( f + h)k(x) shown in (4.8). The minimizer xk+1 of (4.8) is typically expressed in

terms of the proximal operator proxh(·) of a function h which is defined as

proxh(x) = arg min
z

{︂ 1
2
||z − x||2 + h(z)

}︂
.

It follows from (4.8) that the proximal gradient descent update can be expressed

in terms of the proximal operator of the function tkh as

xk+1 = proxtkh(xk − tk∇ f (xk)) (4.9)

The proximal gradient descent algorithm is most useful when the proximal

operator has a closed form or is, at least, very easy to compute. For example,

consider the case of LASSO regression where the non-smooth component h(x) of

the objective function is equal to the L1 norm multiplied by a tuning parameter λ,

i.e., h(x) = λ||x||1 as L1 norm. The proximal mapping of h can be expressed as

proxh(x) = arg min
z

{︂1
2
||z − x||2 + λ||z||1

}︂
= Sλ(x),
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where the jth component of Sλ(x) is given by

[Sλ(x)]j =

⎧⎪⎨⎪⎩
xj − λ if xj > λ

0 if − λ ≤ xj ≤ λ

xj + λ if xj < −λ

, j = 1, . . . , p, (4.10)

where xj is the jth component of x.

As shown in Boyd, Boyd, and Vandenberghe, 2004, both gradient descent and

proximal gradient descent are globally convergent with the same convergence

rate in convex problems. Assuming f and h are both convex and ∇ f is Lipschitz

continuous with Lipschitz constant L f > 0 (i.e., ∀x, y : |∇ f (x)−∇ f (y)| ≤ L f ),

then, for some constant C, the following inequality holds when a constant step

size tk = t f < 1/L f is used

f (xk) + h(xk)− f (x∞)− h(x∞) ≤ C
||x0 − x∞||2

kt f
, (4.11)

where x∞ is the optimal point and x0 the initial point. Therefore, to obtain a

precision level which is within at least ε of the optimal value of the objective

function, we will need O(1/ϵ) proximal gradient or gradient descent iterations.

4.3 Acceleration techniques

4.3.1 Anderson acceleration and DAAREM

Anderson acceleration (AA), also known as Anderson mixing, was originally

introduced by D.G. Anderson in 1965 to accelerate the rate of convergence of fixed-

point iterations in the context of integral equations (Anderson, 1965), and this

acceleration technique has turned out to be useful in a range of other applications.

Recent examples include computing the nearest correlation matrix (Higham and
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Strabić, 2016), reinforcement learning (Geist and Scherrer, 2018), EM acceleration

(Henderson and Varadhan, 2019), and electronic structure computations (Fang

and Saad, 2009).

The Anderson acceleration algorithm with order m applied to solving the

fixed-point problem f (x) = x is shown in Algorithm 1.

Algorithm 1: Anderson acceleration and DAAREM. In the description of
the algorithm, xk+1 = f (xk) is the base fixed-point iteration, and m is the
order of the acceleration scheme.
1 Initialize x0 ∈ X
2 Set x1 = f (x0)
3 for k = 1, 2, 3, · · · do
4 Set mk = min{k, m}
5 Find the {αk+1

j } to solve the following the minimization problem:

min
∑k

j=k−mk
αk+1

j =1

⃦⃦⃦⃦
⃦ k

∑
j=k−mk

αk+1
j ( f (xj)− xj)

⃦⃦⃦⃦
⃦

2

+ λk

⃦⃦⃦
αk+1
−k

⃦⃦⃦2
(4.12)

6 Update xk+1 = (1 − βk)∑k
j=k−mk

αk+1
j xj + βk ∑k

j=k−mk
αk+1

j f (xj)

7 if meets restart criteria then
8 Restart mk from 1
9 end

10 end

In Algorithm 1, αk+1
−k denotes the vector of length mk containing the values

αk+1
j for j = k − mk, . . . , k − 1, and βk is the relaxation factor used in Walker and

Ni, 2011 and Evans et al., 2020. The non-negative scalar λk ≥ 0 is an optional

damping factor used in Henderson and Varadhan, 2019, and if λk = 0 for all

k, then the update xk+1 in Algorithm 1 reduces to the more typical formulation

of Anderson acceleration shown, in, for example, Walker and Ni, 2011. Often,

the minimization problem (4.12) in Algorithm 1 is stated as an equivalent un-

constrained minimization problem with respect to mk unconstrained parameters
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rather than the mk + 1 constrained parameters {αk+1
j }. This formulation is used,

for example, in Higham and Strabić, 2016, and in Henderson and Varadhan, 2019,

where the unconstrained version of the minimization problem allows a more direct

comparison with so-called multisecant quasi-Newton methods (Fang and Saad,

2009).

The convergence of Anderson acceleration for a general, nonlinear fixed-point

iteration has been shown in Toth and Kelley, 2015. A recent work (Evans et al.,

2020) proved that Anderson acceleration can improve the convergence rate in a

scenario with linear convergence but is not guaranteed to improve the convergence

rate in cases of quadratic convergence.

As shown in Algorithm 1, Anderson acceleration can be modified to include

restarts, where the order mk is sometimes reset to 1 and all previous memory

are dropped. Different restart schema have been proposed for Anderson accel-

eration. Henderson and Varadhan, 2019 implemented a direct, periodic restart

scheme where the algorithm restarts whenever the mk reaches the value m. Zhang,

O’Donoghue, and Boyd, 2020 proposed an adaptive restart where the algorithm

only restarts only when the algorithm shows signs of stagnation. In many prac-

tical examples, using restarts markedly improves the performance of Anderson

acceleration and can reduce the occurrence of algorithm stagnation.

In all of the numerical experiments shown in Section 4.5, we use the version

of Anderson acceleration described in Henderson and Varadhan, 2019 which

they refer to as the damped Anderson acceleration with restarts and epsilon

monotonicity (DAAREM) algorithm. The first component which distinguish

DAAREM from many other implementations of Anderson acceleration is the

addition of the damping terms λk ≥ 0. This L2 regularization term generates an
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update which is a compromise between a pure fixed-point update and a pure

Anderson acceleration update. Having large values of λk in early iterations and

allowing λk to decrease in later iterations allows the procedure to bridge the

robustness of the original fixed-point iteration with the fast local convergence

of Anderson acceleration. Another key component of DAAREM is the use of

systematic restarts rather than adaptive restarts, which as mentioned before, is

implemented by restarting whenever the value of mk reaches m. Finally, DAAREM

includes some degree of monotonicity control where the fixed-point iteration

update is used if the proposed Anderson acceleration increases the objective

function (in a minimization problem) by more than a small, pre-specified amount.

4.3.2 SQUAREM

SQUAREM (Varadhan and Roland, 2008) is a technique originally designed to

accelerate EM algorithms, but it has also been shown to be useful in accelerating a

range of other fixed-point iteration problems. SQUAREM has been acknowledged

as a useful, general-purpose acceleration scheme by Lange and others: (Zhou,

Alexander, and Lange, 2011),

Unfortunately, most acceleration techniques are ill-suited to compli-

cated models involving large number of parameters. The squared

iterative methods (SQUAREM), recently proposed by Varadhan and

Roland, constitute a notable exception.

SQUAREM was motivated by an interesting and highly original modification of

the Barzilai-Borwein type spectral gradient algorithm for optimization (Raydan

and Svaiter, 2002). SQUAREM readily scales to high-dimensional settings and
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is very simple to implement. Hence it has been used in numerous applications

to accelerate convergence of underlying iterative algorithm. Examples include:

large-scale genome-wide enrichment analysis (Zhu and Stephens, 2018); analysis

of human movement (Raket et al., 2016); non-negative matrix factorization across

multiple applications (Hobolth et al., 2020); analysis of differential expression

in RNAseq data (Jin et al., 2015)); inferring and visualizing cancer mutation

signatures (Shiraishi et al., 2015); and signal processing techniques using MM

algorithms (Song, Babu, and Palomar, 2016). Convergence of SQUAREM was

proved in Varadhan and Roland, 2004 under certain restrictive assumptions. In

Varadhan and Roland, 2008, the global convergence was shown for the monotonic

version of SQUAREM using the notion of Lyapunov function, which we describe

in more detail in the supplementary material. To date, there is no proof that

provides an insight on the improved convergence rate from using SQUAREM.

Algorithm 2 describes the SQUAREM acceleration technique for finding a

solution of the fixed-point problem f (x) = x.

Algorithm 2: SQUAREM. In the description of the algorithm, xk+1 =
f (xk) is the base fixed-point iteration.

1 Initialize x0 ∈ X
2 for k = 1, 2, 3, · · · do
3 Set yk = f (xk−1) and zk = f (yk)
4 Set r = yk − xk−1 and v = zk − yk − r
5 Compute step length α = α(r, v)
6 Update xk = xk−1 + 2αr + α2v
7 Stabilize xk = f (xk)
8 end

There are different versions of SQUAREM which only differ according to how

the step length in step 5 of Algorithm 2 is computed. The three main choices
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of the step length are: SqS1 which chooses α(r, v) = ⟨r,v⟩
⟨v,v⟩ , SqS2 which chooses

α(r, v) = ⟨r,r⟩
⟨r,v⟩ , and SqS3 which chooses α(r, v) = − ||r||

||v|| .

One can also relate SQUAREM to an order 1 Anderson acceleration update

when the previous iterate has the form xk = f (xk−1). To see why this is the case,

note that when λk = 0 and xk = f (xk−1) the solution of the minimization problem

(4.12) in Algorithm 1 yields the following update

xk+1 = xk−1 + (α + βk)r + αβkv,

where r = f (xk−1)− xk, v = f ( f (xk−1))− 2 f (xk−1) + xk−1 and α = ⟨r,v⟩
⟨v,v⟩ . There-

fore, a single SqS1-SQUAREM update of an iterate xk−1 is equivalent to the follow-

ing procedure: define x̃k = f (xk−1) and find xk by applying an order-1 Anderson

acceleration update with βk = α and where xk−1 and x̃k = f (xk−1) are considered

to be the previous two iterates. Notice that α in SQUAREM does not necessarily be-

long to (0, 1] and typically it can be much larger than 1, indicating that SQUAREM

can be viewed as an over-relaxed version of order-1 Anderson acceleration where

βk is not restricted to the interval (0, 1].

4.3.3 Parabolic-EM

Parabolic EM (Berlinet and Roland, 2009) is another extrapolation scheme de-

signed to accelerate the EM algorithm. At each step, parabolic finds new iterate

by extrapolating along a Bézier curve M(t) controlled by the most recent three
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iterations xk−2, xk−1, xk. Specifically, M(t) is given by

M(t) = (1 − t)2xk−2 + 2t(1 − t)xk−1 + t2xk

= xk−2 + 2t(xk−1 − xk−2) + t2(xk − 2xk−1 + xk−2).

A direct calculation shows that, when recent iterations are obtained from the

base EM iterations (i.e., xk−1 = f (xk−2) and xk = f (xk−1) where f denotes the

fixed-point iteration), all three forms of the SQUAREM update xnew = xk−2 +

2α( f (xk−2)− xk−2) + α2( f ◦ f (xk−2)− 2 f (xk−2) + xk−2) lie on the curve M(t).

Parabolic EM applies a line search to find t by increasing t from 1 and stopping

once the likelihood decreases. If no values of t in the line search are found to

increase the likelihood, the algorithm will restart using the original fixed point

iteration. Parabolic EM has two sub-types called arithmetic search and geometric

search version which differ only in the way they perform the line search across

values of t. Given a step size h > 0, arithmetic search evaluates the likelihood

at M(t) for t = 1 + h, 1 + 2h, . . . until the likelihood function decreases at which

point the line search stops. Similarly, given both a step size h > 0 and exponent

a > 1, geometric search evaluates the likelihood at M(t) for t = 1 + a, 1 + a2h, . . .

and stops whenever the likelihood function decreases. Algorithm 3 describes both

the arithmetic and geometric search versions of parabolic EM.

Note that parabolic EM can also be applied to a general fixed-point iteration as

long as the fixed-point iteration has an associated loss function to minimize. In

that case, one could directly implement Algorithm 3 by replacing the likelihood

evaluations in Algorithm 3 with evaluations of the negative of the loss function of

interest.
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Algorithm 3: Parabolic EM. In the description of the algorithm, xk+1 =
f (xk) is the base fixed-point iteration.

1 Initialize x0 ∈ X, x1 = f (x0), x2 = f (x1)
2 for k = 3, 4, 5, · · · do
3 L2 = Likelihood(xk−1)

4 i = 0, t = 1 + aih (geometric) ; i = 1, t = 1 + ih (arithmetic)
5 xnew = (1 − t)2xk−3 + 2t(1 − t)xk−2 + t2xk−1
6 Lnew = Likelihood(xnew)
7 if Lnew < L2 then
8 xk−2 = xk−1; xk−1 = f (xk−2); xk = f (xk−1)
9 end

10 else
11 while Lnew ≥ L2 do
12 xold = xnew; L2 = Lnew

13 i = i + 1; t = 1 + aih (geometric), t = 1 + ih (arithmetic)
14 xnew = (1 − t)2xk−3 + 2t(1 − t)xk−2 + t2xk−1
15 Lnew = Likelihood(xnew)
16 end
17 xk = f ( f (xold))
18 end
19 end
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4.3.4 Quasi-Newton

Zhou, Alexander, and Lange, 2011 proposed a Quasi-Newton method that can

applied to accelerating fixed-point iterations. Consider a map f : X ⊂ Rd → Rd

from which we want to find its fixed point x such that f (x) = x. This is equivalent

as finding the root of function g(x) = x − f (x). If f is assumed to be differentiable

with Jacobian d f , then Newton’s method for finding the root of g(x) yields the

following iteration

xk+1 = xk − [I − d f (xk)]
−1g(xk). (4.13)

The goal in a quasi-Newton approach is to use an approximation of d f (xk) in

iteration (4.13) rather than the true d f (xk). The secant method is a well-known

root-finding algorithm for a function with scalar inputs that can also be thought of

as a quasi-Newton algorithm.

Zhou, Alexander, and Lange, 2011 proposed Quasi-Newton method is based

on the linear approximation f ◦ f (xk)− f (xk) ≈ M( f (xk)− xk), where x∞ denotes

the fixed point of the iteration and M = d f (x∞) denotes the Jacobian of f at x∞. If

one sets vk = f ◦ f (xk)− f (xk) and uk = f (xk)− xk, then the secant requirement

for a proposed approximate Jacobian Mk at iteration k would be that Mkuk = vk.

For an improved approximation Mk, Zhou, Alexander, and Lange, 2011 require

further that the following q secant conditions Mkuk−j = vk−j, j = 1, . . . q − 1 hold.

The matrix Mk with the smallest Frobenius norm among all matrices satisfying

these q secant conditions is given by Mk = Vk(UT
k Uk)

−1UT
k , where Uk is the

matrix with the q columns {uk−q+1, . . . , uk} and Vk is the matrix with columns

{uk−q+1, . . . , uk}. Using this approximate Jacobian in iteration (4.13) leads to the

order q Quasi-Newton scheme described in Algorithm 4.
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Algorithm 4: Quasi-Newton acceleration. In the description of the algo-
rithm, xk is a vector of length p, q is the order of the acceleration scheme,
and xk+1 = f (xk) is the base fixed-point iteration.
1 Initialize β0 ∈ X. Create an empty p × q matrix U
2 for i = 1, 2, · · · , q + 1 do
3 β1 = f (β0)
4 if i > 1 then
5 Add new column β1 − β0 to the right of matrix U
6 end
7 β0 = β1
8 end
9 Set β2 = f (β1)

10 Create matrix V = U
11 Remove the first column of V and add column β2 − β1 to the right of V
12 Set x0 = β0
13 for k = 1, 2, · · · do
14 Compute QN-updates

xk = f (xk−1)− V(UTU − UTV)−1UT(xk−1 − f (xk−1))
15 Remove the leftmost columns of matrices U and V
16 Add column f (xk)− xk to the right of U
17 Add column f ( f (xk))− f (xk) to the right of V
18 Check for convergence
19 end
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4.3.5 Restarted Nesterov

Nesterov accelerated gradient descent (Nesterov, 2013; Tseng, 2009) is a popular

technique for accelerating first order optimization methods. Using the same

notation as in Section 4.2.2.2, Algorithm 5 outlines Nesterov acceleration applied

to the composite optimization problem (4.7).

Algorithm 5: Nesterov accelerated proximal gradient descent. In the
description of the algorithm, the objective function to be minimized is
f (x) + h(x), where f (x) is assumed to be a smooth function.

1 Initialize x0 = x−1 and θ−1 = 1, k = 0
2 Find the Lipschitz constant L f of f and set t = 1

L f

3 while not converge do

4 θk =

√︂
θ4

k−1+4θ2
k−1−θ2

k−1
2 ; αk =

θk(1−θk−1)
θk−1

5 yk = xk + αk(xk − xk−1)
6 xk+1 = proxth(yk − t∇ f (yk))
7 k = k + 1
8 end

It can be proved that Algorithm 5 has an error rate of O( 1
k2 ), where k is the

iteration number. This is a substantial improvement over the O(1
k ) error rate

shown in Equation (4.11) for the fixed step length proximal gradient descent

algorithm. Readers can consult Tseng, 2009 for a proof of this result.

Unlike most implementations of gradient descent, Algorithm 5 does not guar-

antee or check for monotonicity of the objective function. In practice, if you trace

the objective value when running Algorithm 5, it is often the case that you see

ripples or bumps in the objective function across iterations, which reduces the effi-

ciency of the algorithm. To address this, O’donoghue and Candes, 2015 introduce a

heuristic adaptive restart technique to Nesterov acceleration that can dramatically

93



improve the convergence rate. The basic idea is to reset θk to 1 whenever you see

an increase of objective function f (xk) + h(xk) > f (xk−1) + h(xk−1). Setting θk = 1

reduces the momentum term αk+1(xk+1 − xk) to 0 and the accleration algorithm

will degenerate to ordinary proximal gradient descent in the following step.

Notice that in Algorithm 5, the momentum coefficients αk do not depend on

the proximal gradient descent updates in any way. Therefore, it is possible to

just replace the step xk+1 = proxt(yk − t∇ f (yk)) with any fixed-point iteration

xk+1 = F(yk) and obtain a Nesterov-like acceleration method for a general fixed-

point iteration problem. In Section 4.5, we show that this strategy can accelerate

convergence in problems where gradient descent is not the base fixed-point iter-

ation. To the best of our knowledge, this is the first work to examine Nesterov

acceleration for general fixed-point iteration problems.

4.4 Implementation

R packages are available to facilitate application of the acceleration schemes

described above. For example, the squarem package (Du and Varadhan, 2020)

implements the SQUAREM algorithm, and the daarem package (Henderson and

Varadhan, 2020) implements the DAAREM algorithm described in Section 4.3.1.

The turboEM package (Bobb and Varadhan, 2021) provides a unified API for

SQUAREM, Parabolic-EM, and Quasi-Newton acceleration. Currently, turboEM

does not implement DAAREM, although this should be available in the near future.

In turboEM, when the objective function value for a proposed update increases

the objective value by more than 0.1, we replace this update with one iteration of

the base fixed-point iteration. This can dramatically increase the stability of the
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Quasi-Newton method and, in many cases, can improve the ultimate convergence

speed. Monotonicity control is also a default in the implementations of DAAREM,

SQUAREM and Parabolic-EM. The use of restarts in Nesterov acceleration also

plays a similar role to monotonicity control as the algorithm is restarted whenever

a monotonicity violation occurs. It is worth mentioning that the implementation

of the Quasi-Newton in turboEM includes the option of monotonicity control even

though monotonicity control was not originally implemented in (Zhou, Alexander,

and Lange, 2011).

Our package AccelBenchmark is available from Github which can be used to

easily benchmark all of the methods described in this paper, and this is the package

that we actually used for all the experiments described in this paper.

There is an R package called FixedPoint which contains various acceleration

methods for fixed-point problems, including Anderson acceleration and several

vector extrapolation algorithms. A fundamental difference between that package

and our software packages is that FixedPoint doesn’t contain safeguards such as

steplength and monotonicity controls, damping, and restarts. Consequently, the

algorithms are less reliable for general purpose use.

4.5 Experiments

4.5.1 Settings for the experiments

In all of the experiments in this paper we have used the default control parameters

implemented in each of the acceleration packages (turboEM and daarem). We did

not optimize the algorithmic settings for each problem. This is an important point

because we would like to explore the performance of these methods when they are
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used directly off-the-shelf. Also, unless otherwise stated, convergence is defined

as the first iteration where the norm of the parameter difference ||xk+1 − xk|| is less

than 10−7. We evaluated the performance of each acceleration algorithm in terms

of the number of fixed-point iterations (fpevals) and the elapsed time in seconds

(elapsed). We report the mean ± standard deviation of fpevals and elapsed across a

certain number of simulated experiments. Some of the performance metrics have

distributions with a heavy tail making the standard deviation bigger than the

mean, which is a sign of instability of that algorithm. We also report the number

of failures (# failures), where failure is defined as not achieving convergence within

an allotted number of iterations, which varied for each problem. We also plotted

the convergence trajectories of algorithms in terms of the objective function (e.g.,

log-likelihood). The panels of Figure 1 in the Supplementary Material display

the objective function values versus fixed-point iteration for each of the five main

acceleration methods. The Loss item in the figures are normalized by subtracting

the minimum value of the objective function. For every experiment, we only plot

results for the most difficult setting (e.g., ν = 25 in the multivariate t distribution).

4.5.2 Multivariate t-distribution

A d-dimensional Student-t distribution Tν(µ, Σ) with ν > 0 degrees of freedom,

location parameter µ ∈ Rd, and positive definite scatter matrix Σ has the density

function:

p(x|ν, µ, Σ) =
Γ( d+ν

2 )

Γ( ν
2 )ν

d
2 π

d
2 |Σ| 1

2

1

(1 + 1
ν (x − µ)TΣ−1(x − µ))

d+ν
2

,

where Γ(s) denotes the Gamma function Γ(s) =
∫︁ ∞

0 ts−1e−tdt. For observa-

tions x1, . . . , xn arising from a d-dimensional Student-t distribution, setting the
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derivative of the associated log likelihood function with user-specified weights

ω1, . . . , ωn to zero results in the following system of equations

0 =
n

∑
i=1

ωi
xi − µ

ν + (xi − µ)TΣ−1(xi − µ)
, (4.14)

I =(d + ν)
n

∑
i=1

ωi
Σ− 1

2 (xi − µ)(xi − µ)TΣ− 1
2

ν + (xi − µ)TΣ−1(xi − µ)
, (4.15)

0 =ϕ
(︂ν

2

)︂
− ϕ

(︂ν + d
2

)︂
+

n

∑
i=1

ωi

(︃
ν + d

ν + (xi − µ)TΣ−1(xi − µ)
− log

(︃
ν + d

ν + (xi − µ)TΣ−1(xi − µ)

)︃
− 1
)︃

(4.16)

where ϕ(x) = 1
Γ(x)

dΓ(x)
dx − log(x) and where the weights ωi are assumed to satisfy

ωi ≥ 0, ∑n
i=1 ωi = 1.

Here, we are interested in maximizing the weighted log-likelihood function

under the assumption that all parameters, including the degrees of freedom ν,

are unknown. Hasannasab et al., 2021 show that, under certain conditions, either

a minimizer of the negative weighted log-likelihood exists, or the maximum

likelihood estimator corresponds to the case ν → ∞, for which the Student-t

distribution approaches the Gaussian distribution.

Because one can represent a Tν(µ, Σ) random variable as

µ + Σ
1
2 Z/

√
Y ∼ Tν(µ, Σ), (4.17)

where Z ∼ N(0, I) and Y ∼ Γ(ν/2, ν/2), one can develop an EM algorithm for

parameter estimation by augmenting the observed data x1, . . . , xn with latent data

y1, . . . , yn where it is assumed that yi ∼ Γ(ν/2, ν/2) independently and use the
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fact that the conditional distribution xi|yi is a multivariate normal distribution

with mean vector µ and covariance matrix Σ/yi. This data augmentation leads

to the conventional EM algorithm (Liu and Rubin, 1995) for solving equations

(4.14) - (4.16). The conventional EM algorithm for the multivariate t-distribution is

described in Algorithm 6.

Algorithm 6: EM for estimating multivariate t-distribution parameters.

1 Initialize ν0, µ0, Σ0.
2 for k = 1, 2, · · · do
3 E-Step:
4 zi,k = (xi − µk)

TΣ−1
k (xi − µk)

5 γi,k =
νk+d

νk+zi,k

6 M-Step:

7 µk+1 = ∑i ωiγi,kxi
∑i ωiγi,k

; Σk+1 = ∑i ωiγi,k(xi − µk+1)(xi − µk+1)
T

8 νk+1 = zero of ϕ
(︁

ν
2

)︁
− ϕ

(︂
νk+d

2

)︂
+ ∑i ωi(γi,k − log(γi,k)− 1)

9 end

Recently, Hasannasab et al., 2021 suggested a number of alternative algorithms

for such problem that accelerated the naive EM algorithm. Among them, the

Multivariate Myriad Filter (MMF) algorithm shows excellent overall performance.

The MMF algorithm is the same as the EM algorithm (Algorithm 6) except that

the updates for Σk and νk are changed to

Σk+1 =
n

∑
i=1

ωiγi,k(xi − µk+1)(xi − µk+1)
T

∑n
i=1 ωiγi,k

νk+1 = zero of ϕ
(︂ν

2

)︂
− ϕ

(︃
ν + d

2

)︃
+

n

∑
i=1

ωi

(︃
νk + d

νk + zi,k+1
− log

(︃
νk + d

νk + zi,k+1

)︃
− 1
)︃

.

We conducted a simulation study to determine whether or not our black-

box acceleration schemes can further accelerate the fast MMF algorithm. In this

simulation study, we set µ = (0, 0) and Σ = diag{0.1, 1}, and we considered
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the three choices for the degrees of freedom ν from {3, 10, 25}. For each choice

of ν, we simulated 1000 observations from the corresponding t-distribution and

ran the MMF algorithm together with all acceleration methods to estimate the

parameters µ, Σ, ν, and this procedure was repeated across 200 simulation runs. In

each run, we initialized µ0 to be the value of the sample mean, Σ0 be the sample

covariance matrix, and we initialized the degrees of freedom ν0 by sampling with

equal probability from the set {2, 3, 4}. The hyperparameters of the acceleration

algorithms and the convergence criteria are set to their defaults. These default

settings are discussed in detail in Section 4.4.

Results from this simulation study can be found in Table 4.1. From this table, we

observe that SQUAREM, DAAREM and parabolic-EM (pEM) provide consistent

acceleration when compared to the original MMF algorithm, and the factor of

speedup from these methods increases as ν increases. Quasi-Newton and Nesterov

acceleration also accelerated the MMF algorithm in some simulation settings, but

the improvement over MMF was not as consistent as SQUAREM, DAAREM, and

pEM.

It is interesting to note that the MMF algorithm already gives a huge speed

advantage when compared to the original EM algorithm. For example, in the

ν = 25 case, the EM algorithm required, on average, 1235 fixed point iterations

before convergence which is 9 times more than that of the MMF algorithm. Despite

the fact MMF is much faster than EM, we can still further accelerate MMF using

the methods described in this manuscript.
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Metric MMF SQUAREM DAAREM pEM Quasi-Newton Nesterov
fpevals (ν=3) 34.3 ± 2.94 15.2 ± 1.31 14.4 ± 1.45 21.1 ± 2.4 17.8 ± 17.9 29.5 ± 2.5
elapsed (ν=3) 1.12 ± 0.097 0.398 ± 0.035 0.501 ± 0.056 0.693 ± 0.088 0.678 ± 0.718 0.929 ± 0.085

# failures (ν=3) 0 0 0 0 0 0
fpevals (ν=10) 67.7 ± 12.7 20.4 ± 3.67 16.0 ± 1.42 22.5 ± 1.65 51.4 ± 39.3 50.2 ± 14.2
elapsed (ν=10) 2.20 ± 0.419 0.54 ± 0.103 0.561 ± 0.056 0.761 ± 0.063 1.38 ± 1.08 1.58 ± 0.451

# failures (ν=10) 0 0 0 0 0 0
fpevals (ν=25) 128 ± 42.1 22.9 ± 4.61 17.3 ± 3.37 24.9 ± 1.88 30.7 ± 12.8 77.8 ± 150
elapsed (ν=25) 4.11 ± 1.36 0.61 ± 0.127 0.615 ± 0.14 0.859 ± 0.08 1.22 ± 0.52 2.46 ± 4.81

# failures (ν=25) 0 0 0 0 0 1

Table 4.1: Simulation results for the multivariate t-distribution from 200 independent runs. MMF represents the original
MMF algorithm described above, and other columns show results for different accelerated version of it. If an algorithm
failed to converge or if it converged to a negative log-likelihood more than 1% larger than that of the original MMF
algorithm, then we called it a failure. As a measure of robustness, we also recorded the number of failures for each method.

4.5.3 Poisson Mixtures

A finite mixture of Poisson distributions with C components has the following

discrete probability distribution

f (y | p, λ) =
C

∑
c=1

pc fP (y | λc), (4.18)

where fP (y | λc) = e−λc λ
y
c /y! denotes the probability distribution of y conditional

on belonging to the cth cluster of the mixture distribution. For observations

y1, . . . , yn, we can develop an EM algorithm for estimating the parameters in (4.18)

by introducing latent variables z1, . . . , zn defined as zi = c if yi belongs to the cth

cluster. This particular data augmentation scheme generates the following EM

algorithm updates for the parameters of interest (p1, . . . , pC) and (λ1, . . . , λC):

π̂
(k)
ic = p(k)c

(︂
λ
(k)
c

)︂yi
e−λ

(k)
c

/︃ C

∑
l=1

p(k)l

(︂
λ
(k)
l

)︂yi
e−λ

(k)
l

p(k+1)
c =

1
n

n

∑
i=1

π̂
(k)
ic ; λ

(k+1)
c =

n

∑
i=1

π̂
(k)
ic yi

/︃ n

∑
i=1

π̂
(k)
ic .

We explored our acceleration methods using the real count data from Hassel-

blad, 1966 which contains 1096 observations with each observation representing
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a day of survival. In this dataset, the observations range from 0 to 9 and the

frequencies for these values are 162, 267, 271, 185, 111, 61, 27, 8, 3, 1 respectively,

no censoring is presented. Using this dataset, we fit a finite mixture of Poisson

distributions with 2 components so the parameters of interest are the mixture

probability p1 and the cluster-specific Poisson rates λ1 and λ2.

To study the performance of each acceleration procedure, we ran the original

EM algorithm and all acceleration schemes 500 times. In each run, the mixture

probability p1 was drawn from a uniform distribution over (0, 1), and the Poisson

rates λc were independently drawn from a uniform distribution over (0, 4). In the

Quasi-Newton algorithm, the order was set to 2 since we only have 3 parameters

in this problem. The maximum number of fixed-point iteration evaluations is set

to 3000. Other hyperparameters of the acceleration algorithm and convergence

criteria are set to their defaults, which will be discussed in more detail in Section

4.4. Results can be found in Table 4.2. In this experiment, all of the methods listed

in Table 4.2 dramatically accelerated the original EM algorithm with an up to

11-fold reduction in execution time.

Metric EM SQUAREM DAAREM pEM Quasi-Newton Nesterov
fpevals 2238 ± 273 77 ± 19.1 53 ± 14.3 195 ± 101 131 ± 144 166 ± 23.5
elapsed 32.8 ± 6.34 2.82 ± 4.62 5.4 ± 4.28 5.49 ± 4.96 5.01 ± 5.82 3.82 ± 3.45

# failures 0 0 0 0 1 0

Table 4.2: Simulation results for estimating Poisson mixture parameters from 500 independent
runs. Elapsed time are reporting in millisecond. If an algorithm failed to converge or if it converged
to a negative log-likelihood more than 1% larger than that of the original EM algorithm, then we
called that run a failure. As a measure of robustness, we also recorded the number of failures for
each acceleration method.
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4.5.4 LASSO

The least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996)

is a widely used technique for high dimensional inference due to its ability to

perform simultaneous feature selection and coefficient estimation. However, the

additional L1 penalty in the LASSO objective function also makes it impossible

to obtain a general, closed-form solution for the regression coefficient estimates,

and therefore, iterative algorithms are needed for optimization. A simple but

effective iterative algorithm is proximal gradient descent which uses the iteration

(4.9) described in Section 4.2.2.2.

In this experiment, we use the Madelon data (Guyon et al., 2004) to study the

performance of difference acceleration methods applied to the proximal gradient

descent algorithm. The Madelon data is artificially constructed to illustrate a

particular difficulty for feature selection. It contains n = 2600 binary outcomes

y1, . . . , yn, and for each yi, we have a predictor vector xi of length p = 500. We use

the logistic regression version of LASSO where the objective function ℓ(β) to be

minimized is given by

ℓ(β) = f (β) + h(β) =
n

∑
i=1

(︂
log
(︂

1 + exT
i β
)︂
− yixT

i β
)︂
+ λ

p

∑
p=1

|βp|,

where λ is a parameter that controls the regularization level and where h(β) =

λ ∑
p
p=1 |βp|. Following (4.9) - (4.10) yields the following proximal gradient descent

iteration

βk+1 = proxtkh
(︁

βk − tk∇ f (βk)
)︁

= Sλtk

(︁
βk − tkXT{y − µ(Xβk)}

)︁
, (4.19)
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where X is the n × p matrix whose ith row is xT
i and where µ(Xβk) is the n-

dimensional vector whose ith element is 1/{1 + exp(xT
i βk)}.

In each simulation run, we initialized each coefficient β j independently and

uniformly within (−1, 1), and we then applied the proximal gradient descent

algorithm (4.19) and each of the acceleration versions of it. The values of the

tuning parameter λ where set to one of three values λ ∈ {0.1, 1, 10}. The maxi-

mum number of fixed-point iterations for each method was set to 20, 000. Other

hyperparameters of the acceleration methods and convergence criteria were set

to their defaults. For each choice of λ, we evaluated all of the methods using 200

independent simulation runs.

Results from this simulation study can be found in Table 4.3. On average, all of

the methods provided consistent acceleration of the original proximal gradient

descent algorithm. Among the different acceleration methods, DAAREM consis-

tently gave the greatest acceleration with a more than 20 fold improvement in

execution time across different choices of λ. The failure of gradient descent for

smaller values of λ is due to slow convergence, i.e. it did not converge with a

maximum number of iterations.

Metric pGD SQUAREM DAAREM pEM Quasi-Newton Nesterov
fpevals (λ = 10) 11125 ± 1721 351 ± 53.2 214 ± 61.2 1894 ± 126 617 ± 170 404 ± 53.7
elapsed (λ = 10) 31.3 ± 4.85 0.782 ± 0.13 0.711 ± 0.22 5.47 ± 0.678 1.68 ± 0.49 1.23 ± 0.22

# failures (λ = 10) 0 0 0 0 0 0
fpevals (λ = 1) 19292 ± 720 1057 ± 104 603 ± 481 3094 ± 597 2947 ± 1874 676 ± 44.4
elapsed (λ = 1) 56.3 ± 5.84 2.46 ± 0.645 2.01 ± 1.69 9.09 ± 2.32 7.78 ± 4.88 2.17 ± 0.84

# failures (λ = 1) 54 0 10 0 1 0
fpevals (λ = 0.1) 20000+ 1063 ± 156 618 ± 429 2603 ± 80.8 3112 ± 1741 658 ± 77.6
elapsed (λ = 0.1) 58 ± 2.46 2.52 ± 0.717 1.96 ± 1.34 7.55 ± 0.55 8.74 ± 4.85 2.08 ± 0.33

# failures (λ = 0.1) 200 0 0 0 0 0

Table 4.3: Simulation results for estimating regression coefficients using LASSO logistic regression with 200 independent
runs. pGD represents the original proximal gradient descent algorithm, and the other columns represent different
acceleration methods. If an algorithm failed to converge or if it converged to a loss more than 1% larger than the optimal
loss, we considered it to be a failure. As a measure of robustness, we also recorded the number of failures for each
acceleration method.
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4.5.5 Variational Inference in Bayesian Variable Selection

Bayesian variable selection methods for a regression model (e.g. George and

McCulloch, 1997, Chipman et al., 2001) with binary outcomes often consider the

following model:

logit{p(yi = 1|X, β)} = β0 +
p

∑
j=1

Xijβ j; β j = γjZj;

γj ∼ Bern(π); Zj ∼ N (0, σ2
β); θ = (π, σ2

β) ∼ pθ(·),

where Bern(p) denotes the Bernoulli distribution with success probability p and

pθ(·) denotes the prior distribution for the vector of hyperparameters θ = (π, σ2
β).

The values of the variables γj drive the model selection as β j = 0 whenever γj = 0.

For simplicity, in this section we set β0 = 1 as a known constant.

In Bayesian variable selection, calculation of the marginal posterior inclusion

probabilities is a primary interest. The marginal posterior inclusion probability for

variable j, defined as PIP(j) = p(γj = 1|X, y), can be expressed as

PIP(j) =
∫︂

p(γj = 1|X, y, θ)p(θ|X, y)dθ, (4.20)

where X is the n × p design matrix whose (i, j) element is Xij and y = (y1, . . . , yn).

The quantity p(γj = 1|X, y, θ) does not have a closed-form and is often calcu-

lated using Markov Chain Monte Carlo (MCMC) methods, for example Bottolo,

Richardson, et al., 2010 and Clyde, Ghosh, and Littman, 2011. However, in high-

dimensional applications, MCMC can be very computationally inefficient and

often requires days or even weeks to run. To address this, Carbonetto, Stephens,

et al., 2012 propose using variational inference to approximate p(γj = 1|X, y, θ)
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and then approximate the integral in (4.20) with importance sampling.

To approximate p(γj = 1|X, y, θ), one first approximates the posterior density

p(β, γ|X, y, θ) with a density function of the form q(β, γ|α, µ, s2) = ∏
p
j=1 q(β j, γj|αj, µj, s2

j ),

where the components of this product are assumed to be a mixture of a normal

density and a point mass at 0. Specifically,

q(β j, γj|αj, µj, s2
j ) =

{︄
αjN(β j|µj, s2

j ) if γj = 1

(1 − αj)δ0(β j) otherwise,
(4.21)

where N(·|µ, σ2) stands for a normal density with mean µ and variance σ2 and

δ0(·) for a delta mass centered at 0. To find the best set of parameters, Carbonetto,

Stephens, et al., 2012 derives an EM-type algorithm that can maximize the evidence

lower bound (ELBO):

s2
j =

1
(XTÛX)jj + 1/σ2

β

(4.22)

µj = s2
j

(︄
(XT ŷ)j − ∑

h ̸=j
(XTÛX)hjαhµh

)︄

αj

1 − αj
=

π

1 − π
×

sj

σβ
× exp

(︄
µ2

j

2s2
j

)︄

where (XTX)hj denotes the (h, j) element of the matrix XTX and (XTy)j denotes

the jth element of the vector XTy. Also, Û and ŷ are defined as Û = diag{u} −

uuT/ū; ŷ = y − 1
2 − u, where u = (u1, . . . , un) and ū = ∑n

i=1 ui. The terms

ui =
1
η i

(︁
ψ(ηi)− 1/2

)︁
are updated from

η2
i =

(︄
p

∑
j=1

XijE[β j]

)︄2

+
p

∑
j=1

X2
ijVar[β j],
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where ψ(x) = 1/(1 + e−x). From the variational approximation (4.21), we have

E[β j] = αjµj and Var[β j] = αj(s2
j + µ2

j )− (αjµj)
2.

In this experiment, we examined whether the acceleration schemes described

above can effectively accelerate the coordinate descent algorithm for Bayesian

variable selection in the case of logistic regression. For this simulation study, we

use a setting similar to that described in Carbonetto, Stephens, et al., 2012. Specifi-

cally, we assume that logit{p(yi = 1|β, X)} = −1 − Zi1 + Zi2 + ∑
p
j=1 Xijβ j, where

Zi1 and Zi2 are independent standard normal distributions. In these simulations,

β = (β1, . . . , βp) has length 2000, and only the first m components of β are as-

sumed to be nonzero. The nonzero components of β were sampled independently

from a N(0, 0.25) distribution, and the remaining components were set to 0. The

elements Xij of X were drawn independently from a Binomial(2, pij), where pij

is drawn from a uniform distribution over (0.05, 0.5). Values of m = 100 and

m = 200 were considered, and we performed 200 simulation runs for each setting

of m. In each run, we set the sample size and number of covariates to n = 200

and p = 2000 respectively. We initialized the αj by drawing independently from a

uniform distribution over (0, 1), the µj were initialized by drawing from a normal

distribution with mean 0 and variance 0.1, and the sj do not need to be initialized

as they are first updated using equation (4.22). The model hyperparameters (π, σ2
β)

were set to π = m/2000 and σβ = 0.5. The maximum number of fixed-point iter-

ations was set to 1000. The hyperparameters of the acceleration algorithms and

convergence criteria were set to their default values (see Section 4.4).

Results from this simulation study are shown in Table 4.4. We do not observe a

huge acceleration in this experiment, but SQUAREM still provides a consistent

speedup with a roughly 4 fold improvement for both settings of m. DAAREM, on
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the other hand, failed frequently partly due to it convergence to a solution with a

slightly higher than the optimal value of the loss function.

Metric EM SQUAREM DAAREM pEM Quasi-Newton Nesterov
fpevals (m = 100) 207 ± 11.7 115 ± 21.5 883 ± 230 158 ± 22 349 ± 205 77.5 ± 10.3
elapsed (m = 100) 4.71 ± 0.54 1.3 ± 0.29 20.4 ± 5.49 3.65 ± 0.64 5.06 ± 3.06 1.76 ± 0.31

# failures (m = 100) 0 0 150 0 0 4
fpevals (m = 200) 194 ± 7.42 102 ± 13.5 157 ± 37.3 132 ± 22.6 603 ± 310 81.3 ± 6.88
elapsed (m = 200) 4.19 ± 0.26 1.1 ± 0.15 3.6 ± 0.85 2.89 ± 0.47 8.29 ± 4.23 1.75 ± 0.21

# failures (m = 200) 0 0 0 0 51 0

Table 4.4: Simulation results for Bayesian variable selection using 200 independent runs. EM represents the original
algorithm with the various acceleration methods in other columns. If an algorithm failed to converge or if it converged to a
loss more than 1% larger than the optimal loss, we called it a failure. We also recorded the number of failures for each
method as a measure of robustness.

4.5.6 Sinkhorn Scaling

Given a matrix A, the problem of re-scaling its rows and columns to form a

doubly stochastic matrix Γ = DAE, where D and E are diagonal matrices, is

called a matrix balancing problem. A more constrained version of the matrix

balancing problem is to find diagonal scaling matrices D, E such that Γ = DAE

and that Γ has specified row and column sums, that is, Γ1 = a; ΓT1 = b, where

1 is a vector whose entries are all equal to 1. This problem has a vast array of

applications including, for example, ranking web pages (Knight, 2008), learning

permutation matrices from data (Mena et al., 2018), solving optimal transport

problems (Altschuler, Weed, and Rigollet, 2017), etc.

A naive algorithm for the constrained matrix balancing problem is the Sinkhorn–Knopp

algorithm (Sinkhorn and Knopp, 1967). The algorithm simply scales the matrix

iteratively by rows and columns. Given an initialization u0, v0, the algorithm finds

the next updates by

uk+1 =
a

Avk
; vk+1 =

b
ATuk+1

, (4.23)

where the division of vectors in (4.23) is done element-wise and A is the matrix
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with entries Aij.

In this numerical experiment, we tested the performance of the acceleration

methods on the Sinkhorn-Knopp algorithm for a constrained matrix balancing

problem where we used certain ill-conditioned matrices known as Marshall-Olkin

and Hessenberg matrices (Parlett and Landis, 1982). A Marshall-Olkin matrix

M3 is a 3 × 3 matrix with columns (100, 100, 0)T, (100, 10000, 1)T, (0, 1, 100)T.

We choose the order n Hessenberg matrix Hn to be the n × n matrix such that

Hn(i, i) = 100 for all i and Hn(i, j) = 1, for all (i, j) such that j > i − 1, j ̸= i. All of

the other elements in Hn are equal to 0. For simplicity, a and b in iteration (4.23)

will be set to all 1s.

We run such experiment for 200 independent times. In each run, we used

Hessenberg matrices of order 10 and 50. We initialized parameter v as i.i.d draws

from a uniform distribution between [0.5, 2]. Notice that u can be calculate from

algorithm (4.23), therefore we do not treat it as part of the parameter vector

in the acceleration algorithms. The maximum number of fixed-point iterations

was set to 50,000. We measured the performance of the scaling algorithm by

calculating the mean absolute differences (MAD) between row/column sums and

1. If the two MAD values were, at any time, both smaller than 10−10 we terminated

the algorithm and regarded it to be converged. Other hyperparameters of the

acceleration algorithms are set to their defaults (see Section 4.4).

Results from this numerical experiment can be found in Table 4.5. The results

in Table 4.5 show that we gain substantial and consistent acceleration by using

either Nesterov with restarts or SQUAREM.

It is also possible to use a different approach to matrix scaling, which uses

108



a different fixed-point iteration (see Supplementary section 3). By using the

intermediate scaled matrix diag{uk} A diag{vk} as parameter vector rather than

u, v. The acceleration schemes perform much better with this approach. Although

the final output from this method is not guaranteed to be feasible, we confirmed

that the relative difference is small. For example, in H50 case, the DAAREM

algorithm, which originally failed, converged in a few hundreds of iterations. It

also gave a reasonably accurate answer, the discrepancy from true result being

smaller than 10−5.

Metric SK SQUAREM DAAREM pEM Quasi-Newton Nesterov
fpevals (M3) 5764 ± 121 68 ± 10.1 29.4 ± 0.83 1243 ± 89.9 27.5 ± 10.8 218 ± 1.45
elapsed (M3) 185 ± 13.9 2.36 ± 0.69 3.88 ± 0.65 39.5 ± 3.91 1.55 ± 1.91 6.76 ± 4.51

# failures (M3) 0 0 0 0 0 0
fpevals (H10) 2671 ± 2.5 146 ± 53.6 3216 ± 5888 804 ± 17.1 7139 ± 1933 246 ± 10.1
elapsed (H10) 83.2 ± 4.26 4.88 ± 3.51 388 ± 721 29.3 ± 1.89 475 ± 148 8.14 ± 4.46

# failures (H10) 0 0 1 0 0 0
fpevals (H50) 50000+ 4857 ± 10503 50000+ 17853 ± 15.2 33307 ± 1910 1336 ± 735
elapsed (H50) 4700+ 218 ± 516 7610+ 1130 ± 37.2 3139 ± 168 71.1 ± 38.9

# failures (H50) 200 10 200 0 0 0

Table 4.5: Experimental results for matrix scaling from 200 independent runs. SK represents the original Sinkhorn-Knopp
algorithm, and the other columns are different accelerated versions of it. Elapsed time are reported in milliseconds. The
number of failures (failure to converge) is also recorded to capture the robustness of each algorithm.

4.5.7 Manifold Embedding

Manifold learning is a useful approach for performing both dimension reduc-

tion and data visualization of high-dimensional data. However, many manifold

learning approaches can potentially be influenced by the exploding distance in

high-dimensional space, and make points with moderate distance in the origi-

nal space become too crowded in the embedded low-dimensional space. This

phenomenon is of called the “crowding problem” (Cook et al., 2007). To address

this problem, Maaten and Hinton, 2008 extended the Stochastic Neighborhood

Embedding (SNE) method by using a t-distributed neighborhood probability for
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points in the embedded space. The corresponding method is called t-SNE, and

this method achieved great success in visualizing handwritten digits data and a

variety of other higher-dimensional images and text data.

The main input into the t-SNE procedure, is a collection of vectors x1, . . . , xn

from which one can compute nonnegative similarity scores Pij between pairs xi

and xj normalized so that ∑ij Pij = 1. Given the matrix P containing the values of

Pij, t-SNE seeks to find an embedding matrix Y = (y1, y2, · · · , yn)
T with each yk

in a lower-dimensional space by minimizing the following KL divergence-based

loss function with respect to Y

L(Y; P) = ∑
ij

Pij log
Pij

Qij
(4.24)

Qij =

(︂
1 + ||yi − yj||2

)︂−1

∑ab (1 + ||ya − yb||2)
−1 . (4.25)

Yang, Peltonen, and Kaski, 2015 derived an alternative algorithm for solving a

range of manifold embedding problems and claimed it can be more efficient than

many existing algorithms. The algorithm proposed by Yang, Peltonen, and Kaski,

2015 is essentially an MM algorithm that iteratively majorizes the complex loss

function of interest by a specially designed quadratic form and then minimizing

it with a closed-form solution. In the context of t-SNE where we want to mini-

mize (4.24), this algorithm results in the following updating scheme for a current

embedding matrix Yk

Yk+1 =
(︂
LP◦q +

ρ

4
I
)︂−1 (︂

LQ◦qYk +
ρ

4
Yk

)︂
, (4.26)

where q is the matrix with elements qij =
(︂

1 + ||yi − yj||2
)︂−1

, the operation ◦
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denotes the Hadamard product, Q is the matrix whose elements are defined in

(4.25), and ρ is a positive scalar. Also, LM is the Laplacian of the matrix M which

is defined as LM = Λ − M, where Λ is a diagonal matrix with diagonal entries

Λii = ∑j Mij.

In this experiment, we used the COIL20 data to study the MM algorithm (4.26)

and its acceleration using the methods described in Section 4.3. The COIL20

dataset has 1440 images of 20 objects with resolution 128 × 128. Each object has 72

images which were taken by capturing an image at every 5 degrees along a 360

degree viewing circle. To evaluate the different acceleration methods, we ran each

method 50 times using the MM algorithm (4.26) as the base iteration. In each of the

50 runs, we initialized the elements of the embedding matrix Y by sampling from

a Normal distribution with mean zero and standard deviation 10−3. The value

of ρ in iteration (4.26) is found by using an initial value of 10−5 in each iteration

and using a backtracking search to maintain monotonicity. Since the parameter

values are not identified in embedding problems, we guided convergence using

values of the objective function. Specifically, an algorithm is terminated whenever

1000 fixed point iterations have been reached or when the relative change of the

objective function is less than 10−4. All other hyperparameters were set to their

default values (see Section 4.4).

Results from this numerical experiment can be found in Table 4.6. We can

see that SQUAREM, DAAREM, parabolic-EM, and Quasi-Newton all achieved

a substantially better objective value upon convergence when compared to the

original MM algorithm. Moreover, DAAREM achieved this improved objective

value with an even shorter computation time than the MM algorithm. Figure 4.1

visualizes and compares the embedding results between MM and SQUAREM,
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(a) MM (b) SQUAREM

Figure 4.1: Visualizing one run of experiments. (a) Embedding from the original MM
algorithm with objective value 0.343. (b) Embedding from the SQUAREM algorithm
with objective value 0.264. Different colors are used for different objects. We can see that
SQUAREM, which obtained a lower value of the objective function, does provide better
separation quality across different objects.

indicating that better values of the objective function achieved by SQUAREM do

result in a better quality embedding.

Metric MM SQUAREM DAAREM pEM Quasi-Newton Nesterov
fpevals 62.3 ± 24 162 ± 84.2 50 ± 10.6 100 ± 45.8 114 ± 57.1 127 ± 128
elapsed 11.8 ± 4.41 22.1 ± 11.4 9.6 ± 1.98 18.1 ± 8.4 17.9 ± 9.17 26.9 ± 27.2
objval 0.328 ± 0.022 0.279 ± 0.017 0.289 ± 0.024 0.309 ± 0.016 0.299 ± 0.023 0.347 ± 0.054

Table 4.6: Experiment results for t−SNE from 50 independent runs. MM represents the original MM algorithm, and the
other columns are different acceleration versions of it. objval is the final Kullback–Leibler divergence obtained by the
acceleration method. Smaller values of objval correspond to better embeddings.

4.6 Discussion

In Section 4.5, we tested all the acceleration schemes described in Section 4.3 on

six different practical problems. Although no single method is guaranteed to

always work, at least one of SQUAREM and DAAREM effectively accelerated

the original algorithm in every setting of the six examples. Moreover, SQUAREM
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is particularly robust in providing improved performance in every scenario of

our numerical experiments. Nesterov algorithm is most popular for accelerating

proximal gradient. Here we have shown that SQUAREM and DAAREM are

competitive when compared to Nesterov and hence deserving of greater attention.

We summarize the results from the six main simulation studies. SQUAREM

effectively accelerated the original algorithm in 5 of the 6 problems, giving up

to 78 fold improvement in elapsed time with a mean reduction of roughly 18

fold. In the t-SNE problem, SQUAREM did not accelerate the convergence of the

original algorithm, but it did consistently converge to a better solution than the

original MM algorithm. Nesterov with restarts accelerates convergence in 4 of the

6 problems, with a speedup of up to 68 fold and a mean of 16 fold improvement.

DAAREM can also accelerate 4 of the 6 tasks, gaining a factor of up to 48 fold

improvement with a mean of a 13 fold reduction in computation time. Quasi-

Newton also accelerates 4 of the 6 problems with mean of a 13 fold improvement in

convergence time. Lastly, Parabolic-EM accelerated convergence in 4 of the 6 tasks

with a mean 4 fold improvement in convergence. Since the relative performance

of the acceleration methods can vary across specific problems, we suggest trying

SQUAREM, DAAREM, and Nesterov with restarts when acceleration is needed

for a specific problem. We refer the reader to the our AccelBenchmark Github

package, which allows the user to easily identify the best acceleration scheme for

their specific problem. To use AccelBenchmark, the user only needs to supply the

data, fixed-point mapping function, and a loss function if one is available, and

the package will then automatically benchmark the performance of the original

algorithm and all acceleration methods. For details, one can consult the package

vignette.
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We would like to draw attention to the importance of monotonicity control

implemented in all our acceleration algorithms. The base algorithms such as EM

and MM are intrinsically monotone. Hence they have guaranteed global conver-

gence. Acceleration schemes are based on extrapolation methods. They are fast

in the neighborhood of the solution. However, they are non-monotone and are

not globally convergent. Therefore, we implement safeguards such as controlling

the steplength and ensuring monotonicity to ensure reliable convergence from

any starting value (note that in the default settings monotonicity is relaxed as

the solution is approached). Performance is not guaranteed without such safe-

guards. More importantly, adding the safeguards seldom degrades the speed of

convergence, while providing a better guarantee of convergence that is essential

for general purpose implementation.

It is worth noting that the fixed-point iterations used in some of the examples

discussed here are already faster versions of the original fixed-point schemes.

Specifically, the MMF procedure for the multivariate-t distribution is a faster

version of the original EM algorithm; proximal gradient is a faster version of the

subgradient method for the LASSO problem; and the MM algorithm for t-SNE is a

faster procedure than gradient descent. Nevertheless, as we have demonstrated in

our simulation studies, we can further accelerate these faster schemes using the

described acceleration schemes and achieve more significant speedups in many

cases. Therefore, the acceleration schemes listed here are worth trying even in

problems where there is a relatively fast fixed-point iterative algorithm already

available.

We have shown the described acceleration methods can be very effective in a

114



wide range of applications where fixed-point iteration algorithms are used. How-

ever, the use of these or similar acceleration methods in other contexts are still

lacking in development. For example, adapting these methods to handle nonde-

terministic iterations such as stochastic gradient descent or Markov chain Monte

Carlo procedures would be an interesting topic for future research. Adapting these

acceleration techniques to infinite-dimensional parameter settings (e.g., solutions

of integral equations (Atkinson, 1976)) would also be an interesting direction for

future study. The main issue here is that the parameter dimension can change

across iterations, which may require the introduction of operators like an inner

product in a certain Hilbert space to compute the acceleration method updates.

For example, the Picard iteration (Junkins et al., 2013) and gradient tree boost-

ing (Friedman, 2001) involve update functions where the number of parameters

increases across iterations.
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Chapter 5

Conclusion

It is shown in this dissertation that distributional regression can be used as a new

framework for analysing functional connectivity. It has promising applications in

fields like functional MRI when one wants to consider effects that are not geomet-

rically localized. In such cases, by considering connections to be exchangeable, we

could get a drastic reduction of the multiplicity, which is of great importance in

connectivity analysis. We also show that transformations can be the key to enhance

the regression fit. The recommended approach in the work of Chapter 2 uses a log

quantile density as the functional predictor, rather than the density, distribution

function or quantile function directly. It has been shown that it conveys practical

benefit of focusing attention on tail behavior, where effects are likely to be seen.

Utilizing the quantile density also creates robustness to irrelevant foci pairs being

included in this kind of analysis.

However, we should emphasis that by making the exchangeability assumption,

one could ignore potentially useful localization information that possibly exists

and may reduce power and sensitivity. Obviously, an optimal strategy removes

subject-specific artifacts and reduces the search space with - correct - strong a
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priori hypotheses and then tests only those. However, in the absence of this

ideal case, one is often confronted with a massive unstructured search problem

with localization analyses. In contrast, distribution regression is more akin to

an omnibus F-test, looking over a large range of edges, dramatically mitigating

multiple comparisons issues in the favor of testing one overview hypothesis,

rather than a large collection of highly specific ones. Therefore, we suggest the

method as an early stage tool in a neuroimaging data analyst’s toolbox.

The resulting methodology raises many avenues for future research. For

example, one could consider non-localized effects in dynamic connectivity via

stochastic processes of connectivity densities (by time). In addition, there are

multiple alternatives for densities estimated from correlation of each region pair

for contralateral regions. Here, it should be acknowledged that there is strong

homotopic correlations from symmetric regions. One should then deal with

multivariate densities estimated from pairs of correlations.

In Chapter 3, our theoretical results also suggest that estimating individual

densities is not required if no further transformation on the distribution is required.

Optimal and closed form inference can be performed fully non-parametrically

with only observed samples if one puts a Gaussian process prior on the regression

function. The posterior estimation error would contract in the same rate, in terms

of the function of the number of subjects, as that of typical Gaussian process

regression with vector predictors if our distribution process follow certain richness

conditions. For example we show that Dirichlet process with any parameter falls

into that category. However, the family of processes satisfying the condition is

rather modest. In addition, we can at most access the optimal prediction error

bound for other processes. For future research directions, one could extend the
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linear expectation model to the generalized linear case by adding a link function

to relate the expectation term and the means of outcomes. Also, one could study

the nonparametric single index model extension such that y = g(Ex f ) with some

general function to be estimated. This could drastically increase the model capacity

by expand the possible functions (which should be permutation invariant for the

samples) that we can express.

In both of these chapters, a stark line is created between purely exchangeable

settings and purely localized settings. Another potential avenue for future research

is semi-localized settings. For example, the assumption that voxels near to one

and another are more likely to have stronger connectivity than those further apart,

i.e. the universal law of geography, would be a kind of semi-localized hypothesis.

Other aspects of connectivity one could consider is the previously mentioned

homotopic correlations and network or functional group membership. These

could be implemented with variations on density regression or Gaussian process

regression, yet would not require a common functional or structural geometry

across subjects.

In Chapter 4, we evaluate several acceleration schemes on six separate practical

problems. Although no single method is guaranteed to always work, at least one of

SQUAREM and DAAREM effectively accelerated the original algorithm in every

one of the six settings. Moreover, SQUAREM is particularly robust in providing

improved performance in every scenario of our numerical experiments. We also

show that the modified restart-Nesterov algorithm can be used to accelerate the

general fixed-point iteration problem, where we improve the performance of 4

out of 6 settings and get a mean 16-fold speed up. Since the relative performance

of the acceleration methods can vary across specific problems, we suggest trying
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SQUAREM, DAAREM, and Nesterov with restarts when acceleration is needed

for a specific problem. We refer the reader to the our AccelBenchmark Github

package, which allows the user to easily identify the best acceleration scheme for

their specific problem.

It is worth noting that the fixed-point iterations used in some of the examples

discussed in Chapter 4 are already faster versions of the original fixed-point

schemes. Specifically, the MMF procedure for the multivariate-t distribution is a

faster version of the original EM algorithm; proximal gradient is a faster version

of the subgradient method for the LASSO problem; and the MM algorithm for

t-SNE is a faster procedure than gradient descent. Nevertheless, as we have

demonstrated in our simulation studies, we can further accelerate these faster

schemes or get better results using the described acceleration schemes and achieve

practically significant speedups in many cases. Therefore, the acceleration schemes

listed here are worth trying even, in problems where there is a relatively fast fixed-

point iterative algorithm already available.

We have shown the described acceleration methods can be very effective in

a wide range of applications where fixed-point iteration algorithms are used.

However, the use of these or similar acceleration methods in other contexts are

still lacking in development. For example, adapting these methods to handle

nondeterministic iterations, such as stochastic gradient descent or Markov chain

Monte Carlo procedures, is an interesting topic for future research. Adapting these

acceleration techniques to infinite-dimensional parameter settings (e.g., solutions

of integral equations) would also be an interesting direction for future study. A

main issue in that case is that the parameter dimension can change across iterations,

which may require the introduction of operators, like a Hilbert space inner product,
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to compute the acceleration method updates. For example, the Picard iterations

(Junkins et al., 2013) and gradient tree boosting (Friedman, 2001) involve update

functions where the number of parameters increases across iterations.
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