266 research outputs found
Coherent states in fermionic Fock-Krein spaces and their amplitudes
We generalize the fermionic coherent states to the case of Fock-Krein spaces,
i.e., Fock spaces with an idefinite inner product of Krein type. This allows
for their application in topological or functorial quantum field theory and
more specifically in general boundary quantum field theory. In this context we
derive a universal formula for the amplitude of a coherent state in linear
field theory on an arbitrary manifold with boundary.Comment: 20 pages, LaTeX + AMS + svmult (included), contribution to the
proceedings of the conference "Coherent States and their Applications: A
Contemporary Panorama" (Marseille, 2016); v2: minor corrections and added
axioms from arXiv:1208.503
Searching for new white dwarf pulsators for TESS observations at Konkoly Observatory
We present the results of our survey searching for new white dwarf pulsators for observations by the TESS space telescope. We collected photometric time-series data on 14 white dwarf variable candidates at Konkoly Observatory, and found two new bright ZZ Ceti stars, namely EGGR 120 and WD 1310+583. We performed a Fourier analysis of the datasets. In the case of EGGR 120, which was observed on one night only, we found one significant frequency at 1332μHz with 2.3 mmag amplitude. We successfully observed WD 1310+583 on eight nights, and determined 17 significant frequencies in the whole dataset. Seven of them seem to be independent pulsation modes between 634 and 2740μHz, and we performed preliminary asteroseismic investigations of the star utilizing six of these periods. We also identified three new light variables on the fields of white dwarf candidates: an eclipsing binary, a candidate delta Scuti/beta Cephei and a candidate W UMa-type star
Computing the first eigenpair of the p-Laplacian via inverse iteration of sublinear supersolutions
We introduce an iterative method for computing the first eigenpair
for the -Laplacian operator with homogeneous Dirichlet
data as the limit of as , where
is the positive solution of the sublinear Lane-Emden equation
with same boundary data. The method is
shown to work for any smooth, bounded domain. Solutions to the Lane-Emden
problem are obtained through inverse iteration of a super-solution which is
derived from the solution to the torsional creep problem. Convergence of
to is in the -norm and the rate of convergence of
to is at least . Numerical evidence is
presented.Comment: Section 5 was rewritten. Jed Brown was added as autho
Initial Value Problems and Signature Change
We make a rigorous study of classical field equations on a 2-dimensional
signature changing spacetime using the techniques of operator theory. Boundary
conditions at the surface of signature change are determined by forming
self-adjoint extensions of the Schr\"odinger Hamiltonian. We show that the
initial value problem for the Klein--Gordon equation on this spacetime is
ill-posed in the sense that its solutions are unstable. Furthermore, if the
initial data is smooth and compactly supported away from the surface of
signature change, the solution has divergent -norm after finite time.Comment: 33 pages, LaTeX The introduction has been altered, and new work
(relating our previous results to continuous signature change) has been
include
MOST light-curve analysis of the gamma Dor pulsator HR 8799, showing resonances and amplitude variations
Context: The central star of the HR 8799 system is a gamma Doradus-type
pulsator. The system harbours four planetary-mass companions detected by direct
imaging, and is a good solar system analogue. The masses of the companions are
not known accurately, because the estimation depends strongly on the age of the
system, which is also not known with sufficient accuracy. Asteroseismic studies
of the star might help to better constrain the age of HR 8799. We organized an
extensive photometric and multi-site spectroscopic observing campaign for
studying the pulsations of the central star.
Aims: The aim of the present study is to investigate the pulsation properties
of HR 8799 in detail via the ultra-precise 47-d-long nearly continuous
photometry obtained with the MOST space telescope, and to find as many
independent pulsation modes as possible, which is the prerequisite of an
asteroseismic age determination.
Methods: We carried out Fourier analysis of the wide-band photometric time
series.
Results: We find that resonance and sudden amplitude changes characterize the
pulsation of HR 8799. The dominant frequency is always at f1 = 1.978 c/d. Many
multiples of one ninth of the dominant frequency appear in the Fourier spectrum
of the MOST data: n/9 f1, where n={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 17,
18}. Our analysis also reveals that many of these peaks show strong amplitude
decrease and phase variations even on the 47-d time-scale. The dependencies
between the pulsation frequencies of HR 8799 make the planned subsequent
asteroseismic analysis rather difficult. We point out some resemblance between
the light curve of HR 8799 and the modulated pulsation light curves of Blazhko
RR Lyrae stars.Comment: Accepted for publication in Astronomy and Astrophysics. 8 pages, 4
figure
X-Irradiation-Induced Changes of the Prelysosomal and Lysosomal Compartments and Proteolysis in HT-29 Cells
As a consequence of external and internal ionizing radiation, lysosome-like bodies have been observed to increase both in size and number in some cell types. We investigated this process by morphological methods (electron microscopy, cationized ferritin uptake, acid phosphatase histochemistry, morphometry) in cultured HT-29 cells. In parallel with these studies, we measured the rate of protein degradation on the basis of 14C-valine release from prelabeled cellular proteins. We found that at 2 and 4 Gy doses of X-irradiation the volume of the vacuolar (probably lysosomal) compartment increased without detectable changes of acid phosphatase activity. A 2 Gy irradiation dose did not change protein degradation rate. However, 4 Gy caused a significant inhibition of 14C-valine release from prelabeled proteins. Our results indicate, that the radiation induced expansion of the lysosomal compartment is not necessarily accompanied by increased lytic activity of HT-29 cells
Subgroup-specific structural variation across 1,000 medulloblastoma genomes
Abstract
Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene associated with Parkinson's disease, which is exquisitely restricted to Group 4α. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGF-β signalling in Group 3, and NF-κB signalling in Group 4, suggest future avenues for rational, targeted therapy
- …