171 research outputs found

    Sequential phosphorylation of SLP-76 at tyrosine 173 is required for activation of T and mast cells.

    Get PDF
    Cooperatively assembled signalling complexes, nucleated by adaptor proteins, integrate information from surface receptors to determine cellular outcomes. In T and mast cells, antigen receptor signalling is nucleated by three adaptors: SLP-76, Gads and LAT. Three well-characterized SLP-76 tyrosine phosphorylation sites recruit key components, including a Tec-family tyrosine kinase, Itk. We identified a fourth, evolutionarily conserved SLP-76 phosphorylation site, Y173, which was phosphorylated upon T-cell receptor stimulation in primary murine and Jurkat T cells. Y173 was required for antigen receptor-induced phosphorylation of phospholipase C-Ξ³1 (PLC-Ξ³1) in both T and mast cells, and for consequent downstream events, including activation of the IL-2 promoter in T cells, and degranulation and IL-6 production in mast cells. In intact cells, Y173 phosphorylation depended on three, ZAP-70-targeted tyrosines at the N-terminus of SLP-76 that recruit and activate Itk, a kinase that selectively phosphorylated Y173 in vitro. These data suggest a sequential mechanism whereby ZAP-70-dependent priming of SLP-76 at three N-terminal sites triggers reciprocal regulatory interactions between Itk and SLP-76, which are ultimately required to couple active Itk to its substrate, PLC-Ξ³1

    Endometrial regenerative cells: A novel stem cell population

    Get PDF
    Angiogenesis is a critical component of the proliferative endometrial phase of the menstrual cycle. Thus, we hypothesized that a stem cell-like population exist and can be isolated from menstrual blood. Mononuclear cells collected from the menstrual blood contained a subpopulation of adherent cells which could be maintained in tissue culture for >68 doublings and retained expression of the markers CD9, CD29, CD41a, CD44, CD59, CD73, CD90 and CD105, without karyotypic abnormalities. Proliferative rate of the cells was significantly higher than control umbilical cord derived mesenchymal stem cells, with doubling occurring every 19.4 hours. These cells, which we termed "Endometrial Regenerative Cells" (ERC) were capable of differentiating into 9 lineages: cardiomyocytic, respiratory epithelial, neurocytic, myocytic, endothelial, pancreatic, hepatic, adipocytic, and osteogenic. Additionally, ERC produced MMP3, MMP10, GM-CSF, angiopoietin-2 and PDGF-BB at 10–100,000 fold higher levels than two control cord blood derived mesenchymal stem cell lines. Given the ease of extraction and pluripotency of this cell population, we propose ERC as a novel alternative to current stem cells sources

    Ca2+-Mg2+-dependent ATP-ase activity in hemodialyzed children. Effect of a hemodialysis session

    Get PDF
    In the course of chronic kidney disease (CKD) the intracellular erythrocyte calcium (Cai2+) level increases along with the progression of the disease. The decreased activity of Ca2+-Mg2+-dependent ATP-ase (PMCA) and its endogenous modulators calmodulin (CALM), calpain (CANP), and calpastatin (CAST) are all responsible for disturbed calcium metabolism. The aim of the study was to analyze the activity of PMCA, CALM, and the CANP-CAST system in the red blood cells (RBCs) of hemodialyzed (HD) children and to estimate the impact of a single HD session on the aforementioned disturbances. Eighteen patients on maintenance HD and 30 healthy subjects were included in the study. CALM, Cai2+ levels and basal PMCA (bPMCA), PMCA, CANP, and CAST activities were determined in RBCs before HD, after HD, and before the next HD session. Prior to the HD session, the level of Cai2+ and the CAST activity were significantly higher, whereas bPMCA, PMCA, and CANP activities and the CALM level were significantly lower than in controls. After the HD session, the Cai2+ concentration and the CAST activity significantly decreased compared with the basal values, whereas the other parameters significantly increased, although they did not reach the levels of healthy children. The values observed prior to both HD sessions were similar. Cai2+ homeostasis is severely disturbed in HD children, which may be caused by the reduction in the PMCA activity, CALM deficiency, and CANP-CAST system disturbances. A single HD session improved these disturbances but the effect is transient

    Like mother, like child : investigating perinatal and maternal health stress in post-medieval London.

    Get PDF
    Post-Medieval London (sixteenth-nineteenth centuries) was a stressful environment for the poor. Overcrowded and squalid housing, physically demanding and risky working conditions, air and water pollution, inadequate diet and exposure to infectious diseases created high levels of morbidity and low life expectancy. All of these factors pressed with particular severity on the lowest members of the social strata, with burgeoning disparities in health between the richest and poorest. Foetal, perinatal and infant skeletal remains provide the most sensitive source of bioarchaeological information regarding past population health and in particular maternal well-being. This chapter examined the evidence for chronic growth and health disruption in 136 foetal, perinatal and infant skeletons from four low-status cemetery samples in post-medieval London. The aim of this study was to consider the impact of poverty on the maternal-infant nexus, through an analysis of evidence of growth disruption and pathological lesions. The results highlight the dire consequences of poverty in London during this period from the very earliest moments of life

    Matrix Recruitment and Calcium Sequestration for Spatial Specific Otoconia Development

    Get PDF
    Otoconia are bio-crystals anchored to the macular sensory epithelium of the utricle and saccule in the inner ear for motion sensing and bodily balance. Otoconia dislocation, degeneration and ectopic calcification can have detrimental effects on balance and vertigo/dizziness, yet the mechanism underlying otoconia formation is not fully understood. In this study, we show that selected matrix components are recruited to form the crystal matrix and sequester Ca2+ for spatial specific formation of otoconia. Specifically, otoconin-90 (Oc90) binds otolin through both domains (TH and C1q) of otolin, but full-length otolin shows the strongest interaction. These proteins have much higher expression levels in the utricle and saccule than other inner ear epithelial tissues in mice. In vivo, the presence of Oc90 in wildtype (wt) mice leads to an enrichment of Ca2+ in the luminal matrices of the utricle and saccule, whereas absence of Oc90 in the null mice leads to drastically reduced matrix-Ca2+. In vitro, either Oc90 or otolin can increase the propensity of extracellular matrix to calcify in cell culture, and co-expression has a synergistic effect on calcification. Molecular modeling and sequence analysis predict structural features that may underlie the interaction and Ca2+-sequestering ability of these proteins. Together, the data provide a mechanism for the otoconial matrix assembly and the role of this matrix in accumulating micro-environmental Ca2+ for efficient CaCO3 crystallization, thus uncover a critical process governing spatial specific otoconia formation

    A New Mixed-Backbone Oligonucleotide against Glucosylceramide Synthase Sensitizes Multidrug-Resistant Tumors to Apoptosis

    Get PDF
    Enhanced ceramide glycosylation catalyzed by glucosylceramide synthase (GCS) limits therapeutic efficiencies of antineoplastic agents including doxorubicin in drug-resistant cancer cells. Aimed to determine the role of GCS in tumor response to chemotherapy, a new mixed-backbone oligonucleotide (MBO-asGCS) with higher stability and efficiency has been generated to silence human GCS gene. MBO-asGCS was taken up efficiently in both drug-sensitive and drug-resistant cells, but it selectively suppressed GCS overexpression, and sensitized drug-resistant cells. MBO-asGCS increased doxorubicin sensitivity by 83-fold in human NCI/ADR-RES, and 43-fold in murine EMT6/AR1 breast cancer cells, respectively. In tumor-bearing mice, MBO-asGCS treatment dramatically inhibited the growth of multidrug-resistant NCI/ADR-RE tumors, decreasing tumor volume to 37%, as compared with scrambled control. Furthermore, MBO-asGCS sensitized multidrug-resistant tumors to chemotherapy, increasing doxorubicin efficiency greater than 2-fold. The sensitization effects of MBO-asGCS relied on the decreases of gene expression and enzyme activity of GCS, and on the increases of C18-ceramide and of caspase-executed apoptosis. MBO-asGCS was accumulation in tumor xenografts was greater in other tissues, excepting liver and kidneys; but MBO-asGCS did not exert significant toxic effects on liver and kidneys. This study, for the first time in vivo, has demonstrated that GCS is a promising therapeutic target for cancer drug resistance, and MBO-asGCS has the potential to be developed as an antineoplastic agent

    Thermal Adaptation of Dihydrofolate Reductase from the Moderate ThermophileGeobacillus stearothermophilus

    Get PDF
    The thermal melting temperature of dihydrofolate reductase from Geobacillus stearothermophilus (BsDHFR) is 30 Β°C higher than that of its homologue from the psychrophile Moritella profunda. Additional proline residues in the loop regions of BsDHFR have been proposed to enhance the thermostability of BsDHFR, but site-directed mutagenesis studies reveal that these proline residues contribute only minimally. Instead, the high thermal stability of BsDHFR is partly due to removal of water-accessible thermolabile residues such as glutamine and methionine, which are prone to hydrolysis or oxidation at high temperatures. The extra thermostability of BsDHFR can be obtained by ligand binding, or in the presence of salts or cosolvents such as glycerol and sucrose. The sum of all these incremental factors allows BsDHFR to function efficiently in the natural habitat of G. stearothermophilus, which is characterized by temperatures that can reach 75 Β°C

    Paternal and maternal influences on differences in birth weight between Europeans and Indians born in the UK.

    Get PDF
    BACKGROUND: Ethnic groups differ significantly in adult physique and birth weight. We aimed to improve understanding of maternal versus paternal contributions to ethnic differences in birth weight, by comparing the offspring of same-ethnic versus mixed-ethnic unions amongst Europeans and South Asian Indians in the UK. METHODOLOGY AND PRINCIPAL FINDINGS: We used data from the UK Office for National Statistics Longitudinal Study (LS) and the Chelsea and Westminster Hospital (CWH), London. In the combined sample at all gestational ages, average birth weight of offspring with two European parents was significantly greater than that of offspring with two Indian parents [Ξ”β€Š=β€Š344 (95% CI 329, 360) g]. Compared to offspring of European mothers, the offspring of Indian mothers had lower birth weight, whether the father was European [Ξ”β€Š=β€Š-152 (95% CI -92, -212) g] or Indian [Ξ”β€Š=β€Š-254 (95% -315, -192) g]. After adjustment for various confounding factors, average birth weight of offspring with European father and Indian mother was greater than that of offspring with two Indian parents [LS: Ξ”β€Š=β€Š249 (95% CI 143, 354) g; CWH: Ξ”β€Š=β€Š236 (95% CI 62, 411) g]. Average birth weight of offspring with Indian father and European mother was significantly less than that of offspring with two European parents [LS: Ξ”β€Š=β€Š-117 (95% CI -207, -26) g; CWH: Ξ”β€Š=β€Š-83 (-206, 40) g]. CONCLUSIONS/SIGNIFICANCE: Birth weight of offspring with mixed-ethnic parentage was intermediate between that of offspring with two European or two Indian parents, demonstrating a paternal as well as a maternal contribution to ethnic differences in fetal growth. This can be interpreted as demonstrating paternal modulation of maternal investment in offspring. We suggest long-term nutritional experience over generations may drive such ethnic differences through parental co-adaptation
    • …
    corecore