343 research outputs found

    Three-dimensional analysis of anisotropic spatially reinforced structures

    Get PDF
    The material-adaptive three-dimensional analysis of inhomogeneous structures based on the meso-volume concept and application of deficient spline functions for displacement approximations is proposed. The general methodology is demonstrated on the example of a brick-type mosaic parallelepiped arbitrarily composed of anisotropic meso-volumes. A partition of each meso-volume into sub-elements, application of deficient spline functions for a local approximation of displacements and, finally, the use of the variational principle allows one to obtain displacements, strains, and stresses at anypoint within the structural part. All of the necessary external and internal boundary conditions (including the conditions of continuity of transverse stresses at interfaces between adjacent meso-volumes) can be satisfied with requisite accuracy by increasing the density of the sub-element mesh. The application of the methodology to textile composite materials is described. Several numerical examples for woven and braided rectangular composite plates and stiffened panels under transverse bending are considered. Some typical effects of stress concentrations due to the material inhomogeneities are demonstrated

    Mobility-Dependence of the Critical Density in Two-Dimensional Systems: An Empirical Relation

    Full text link
    For five different electron and hole systems in two dimensions (Si MOSFET's, p-GaAs, p-SiGe, n-GaAs and n-AlAs), the critical density, ncn_c that marks the onset of strong localization is shown to be a single power-law function of the scattering rate 1/τ1/\tau deduced from the maximum mobility. The resulting curve defines the boundary separating a localized phase from a phase that exhibits metallic behavior. The critical density nc0n_c \to 0 in the limit of infinite mobility.Comment: 2 pages, 1 figur

    The Light Nuclei Stopping in a Solid

    Get PDF
    The report discusses processes of light nuclei stopping in a solid-state barrier. Accounting algorithm of energy losses of light nuclei for (0 ÷ 20) MeV – range was considered. Calculated functions of the energy losses for various materials were presented

    Electric dipole moment enhancement factor of thallium

    Full text link
    The goal of this work is to resolve the present controversy in the value of the EDM enhancement factor of Tl. We have carried out several calculations by different high-precision methods, studied previously omitted corrections, as well as tested our methodology on other parity conserving quantities. We find the EDM enhancement factor of Tl to be equal to -573(20). This value is 20% larger than the recently published result of Nataraj et al. [Phys. Rev. Lett. 106, 200403 (2011)], but agrees very well with several earlier results.Comment: 5 pages; v2: link to supplemental material adde

    Stochastic damage evolution in textile laminates

    Get PDF
    A probabilistic model utilizing random material characteristics to predict damage evolution in textile laminates is presented. Model is based on a division of each ply into two sublaminas consisting of cells. The probability of cell failure is calculated using stochastic function theory and maximal strain failure criterion. Three modes of failure, i.e. fiber breakage, matrix failure in transverse direction, as well as matrix or interface shear cracking, are taken into account. Computed failure probabilities are utilized in reducing cell stiffness based on the mesovolume concept. A numerical algorithm is developed predicting the damage evolution and deformation history of textile laminates. Effect of scatter of fiber orientation on cell properties is discussed. Weave influence on damage accumulation is illustrated with the help of an example of a Kevlar/epoxy laminate

    The effects of specimen width on tensile properties of triaxially braided textile composites

    Get PDF
    The objective of this study was to examine the effect of the unit cell architecture on the mechanical response of textile reinforced composite materials. Specifically, the study investigated the effect of unit cell size on the tensile properties of 2D triaxially braided graphite epoxy laminates. The figures contained in this paper reflect the presentation given at the conference. They may be divided into four sections: (1) a short definition of the material system tested; (2) a statement of the problem and a review of the experimental results; (3) experimental results consist of a Moire interferometry study of the strain distribution in the material plus modulus and strength measurements; and (4) a short summary and a description of future work will close the paper

    Transition frequency shifts with fine structure constant variation for Fe II: Breit and core-valence correlation correction

    Full text link
    Transition frequencies of Fe II ion are known to be very sensitive to variation of the fine structure constant \alpha. The resonance absorption lines of Fe II from objects at cosmological distances are used in a search for the possible variation of \alpha in cause of cosmic time. In this paper we calculated the dependence of the transition frequencies on \alpha^2 (q-factors) for Fe II ion. We found corrections to these coefficients from valence-valence and core-valence correlations and from the Breit interaction. Both the core-valence correlation and Breit corrections to the q-factors appeared to be larger than had been anticipated previously. Nevertheless our calculation confirms that the Fe II absorption lines seen in quasar spectra have large q-factors of both signs and thus the ion Fe II alone can be used in the search for the \alpha-variation at different cosmological epochs.Comment: 7 pages, submitted to Phys. Rev.

    Challenges of Formation of Thin-film Solid Electrolyte Layers on Non-Conductive Substrates by Electrophoretic Deposition

    Full text link
    In this work, the challenges associated with the formation of single and bilayer coatings based on Ce0.8 Sm0.2 O1.9 (SDC) and CuO modified BaCe0.5 Zr0.3 Y0.1 Yb0.1 O3−δ (BCZYYbO-CuO) solid state electrolytes on porous non-conducting NiO-SDC anode substrates by the method of electrophoretic deposition (EPD) are considered. Various approaches that had been selected after analysis of the literature data in order to carry out the EPD, are tested: direct deposition on a porous non-conductive anode substrate and multiple options for creating the conductivity of the anode substrate under EPD conditions such as the reduction of the NiO-SDC substrate and the creation of a surface conducting sublayer via synthesizing a polypyrrole (PPy) film. New effective method was proposed based on the deposition of a platinum layer on the front side of the substrate. It was ascertained that, during the direct EPD on the porous NiO-SDC substrate, the formation of a continuous coating did not occur, which may be due to insufficient porosity of the substrate used. It was shown that the use of reduced substrates leads to cracking and, in some cases, to the destruction of the entire SDC/NiO-SDC structure. The dependence of the electrolyte film sinterability on the substrate shrinkage was studied. In contrast to the literature data, the use of the substrates with a reduced pre-sintering temperature had no pronounced effect on the densification of the SDC electrolyte film. It was revealed that complete sintering of the SDC electrolyte layer with the formation of a developed grain structure is possible at a temperature of 1550◦ C. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Funding: The work was financially supported by the Russian Foundation for Basic Research, grant № 20-03-00151. Investigation of the kinetic properties of the suspensions was performed within the framework of the state assignment of IEP UB RAS (EPD thin-layer coatings, No. AAAA-A19-119061090040-7). The study was in part carried out on the equipment of the Shared Access Center of “Composition of compounds” IHTE UB RAS and the Shared Access Centers of the IEP UB RAS and ISSC UB RAS

    The metal-insulator transition in Si:X: Anomalous response to a magnetic field

    Full text link
    The zero-temperature magnetoconductivity of just-metallic Si:P scales with magnetic field, H, and dopant concentration, n, lying on a single universal curve. We note that Si:P, Si:B, and Si:As all have unusually large magnetic field crossover exponents near 2, and suggest that this anomalously weak response to a magnetic field is a common feature of uncompensated doped semiconductors.Comment: 4 pages (including figures
    corecore