52 research outputs found

    Neurovascular Unit: A New Target for Treating Early Stages of Diabetic Retinopathy

    Get PDF
    Retinopatía diabética; Neurodegeneración; Unidad neurovascularRetinopatia diabètica; Neurodegeneració; Unitat neurovascularDiabetic retinopathy; Neurodegeneration; Neurovascular unitThe concept of diabetic retinopathy as a microvascular disease has evolved and is now considered a more complex diabetic complication in which neurovascular unit impairment plays an essential role and, therefore, can be considered as a main therapeutic target in the early stages of the disease. However, neurodegeneration is not always the apparent primary event in the natural story of diabetic retinopathy, and a phenotyping characterization is recommendable to identify those patients in whom neuroprotective treatment might be of benefit. In recent years, a myriad of treatments based on neuroprotection have been tested in experimental models, but more interestingly, there are drugs with a dual activity (neuroprotective and vasculotropic). In this review, the recent evidence concerning the therapeutic approaches targeting neurovascular unit impairment will be presented, along with a critical review of the scientific gaps and problems which remain to be overcome before our knowledge can be transferred to clinical practice.This research was funded by grants from the Instituto de Salud Carlos III (DTS18/0163, PI19/01215, and ICI20/00129). The funders had no role in the design of the study; in the collection, analyses, or the interpretation of the data; in the writing of the manuscript, or in the decision to publish the results

    Transcriptomic Analysis Reveals That Retinal Neuromodulation Is a Relevant Mechanism in the Neuroprotective Effect of Sitagliptin in an Experimental Model of Diabetic Retinopathy

    Get PDF
    Diabetic retinopathy; Sitagliptin; Synaptic signal transmissionRetinopatia diabètica; Sitagliptina; Transmissió del senyal sinàpticRetinopatía diabética; Sitagliptina; Transmisión de señal sinápticaSynaptic dysfunction and neuronal damage have been extensively associated with diabetic retinopathy (DR). Our group evidenced that chronic hyperglycemia reduces the retinal expression of presynaptic proteins, which are crucial for proper synaptic function. The aim of the study was to explore the effect of topically administered sitagliptin, an inhibitor of the enzyme dipeptidyl peptidase-4, on the retinal expression patterns of an experimental model of DR. Transcriptome analysis was performed, comparing the retinas of 10 diabetic (db/db) mice randomly treated with sitagliptin eye drops (10 mg/mL) twice daily and the retinas of 10 additional db/db mice that received vehicle eye drops. Ten non-diabetic mice (db/+) were used as a control group. The Gene Ontology (GO) and Reactome databases were used to perform the gene set enrichment analysis (GSEA) in order to explore the most enriched biological pathways among the groups. The most differentiated genes of these pathways were validated through quantitative RT-PCR. Transcriptome analysis revealed that sitagliptin eye drops have a significant effect on retinal expression patterns and that neurotransmission is the most enriched biological process. Our study evidenced enriched pathways that contain genes involved in membrane trafficking, transmission across chemical synapses, vesicle-mediated transport, neurotransmitter receptors and postsynaptic signal transmission with negative regulation of signaling as a consequence of neuroprotector treatment with sitagliptin. This improves the modulation of the macromolecule biosynthetic process with positive regulation of cell communication, which provides beneficial effects for the neuronal metabolism. This study suggests that topical administration of sitagliptin ameliorates the abnormalities on presynaptic and postsynaptic signal transmission during experimental DR and that this improvement is one of the main mechanisms behind the previously demonstrated beneficial effects.This research was funded by grants from the Ministerio de Economía y Competitividad (PID2019-104225RB-I00) and the Instituto de Salud Carlos III (DTS18/0163, PI19/01215 and ICI20/00129). The study funder was not involved in the design of the study

    Effects of the topical administration of semaglutide on retinal neuroinflammation and vascular leakage in experimental diabetes

    Get PDF
    Background: An unexpected increase in the rate of severe diabetic retinopathy was observed in the Semaglutide in Subjects with Type 2 Diabetes (SUSTAIN)-6 clinical trial. Although this effect was attributed to a rapid decrease in blood glucose levels, a direct deleterious effect of semaglutide on the retina could not be ruled out. In order to shed light on this issue, we have performed a study aimed at testing the direct effect of semaglutide administered by eye drops on retinal neuroinflammation and microvascular abnormalities using the db/db mouse model. Methods: Eye drops containing semaglutide (0.33 mg/mL; 5 µL once/daily) or vehicle (PBS; 5 µL once daily) were administered for 15 days. Results: We found that semaglutide significantly reduced glial activation, as well as the retinal expression of Nuclear factor kB (NF-κB), proinflammatory cytokines (IL-1β, IL-6, IL-18) and Intercellular Adhesion Molecule (ICAM)-1. In addition, semaglutide prevented the apoptosis of cells from the retinal ganglion layer and activated the protein kinase B (AKT) pathway. Finally, a dramatic decrease in vascular leakage was observed in db/db mice treated with semaglu-tide. All these findings were observed without any change in blood glucose levels and, therefore, can be directly attributed to semaglutide. Conclusions: These experimental findings point to a beneficial rather than a deleterious effect of semaglutide on the retina of subjects with diabetes. 092

    Caffeine and the Risk of Diabetic Retinopathy in Type 2 Diabetes Mellitus: Findings from Clinical and Experimental Studies

    Get PDF
    Caffeine intake; Tea consumption; Type 2 diabetesConsumo de cafeína; Consumo de té; Diabetes tipo 2Consum de cafeïna; Consum de te; Diabetis tipus 2The aim of this study was to assess the potential benefits of caffeine intake in protecting against the development of diabetic retinopathy (DR) in subjects with type 2 diabetes (T2D). Furthermore, we tested the effect of topical administration of caffeine on the early stages of DR in an experimental model of DR. In the cross-sectional study, a total of 144 subjects with DR and 147 individuals without DR were assessed. DR was assessed by an experienced ophthalmologist. A validated food frequency questionnaire (FFQ) was administered. In the experimental model, a total of 20 mice were included. One drop (5 μL) of caffeine (5 mg/mL) (n = 10) or vehicle (5 μL PBS, pH 7.4) (n = 10) was randomly administered directly onto the superior corneal surface twice daily for two weeks in each eye. Glial activation and retinal vascular permeability were assessed using standard methods. In the cross-sectional study in humans, the adjusted-multivariable model showed that a moderate and high (Q2 and Q4) caffeine intake had a protective effect of DR (odds ratio (95% confidence interval) = 0.35 (0.16–0.78); p = 0.011 and 0.35 (0.16–0.77); p = 0.010, respectively). In the experimental model, the administration of caffeine did not improve either reactive gliosis or retinal vascular permeability. Our results suggest a dose-dependent protective effect of caffeine in the development of DR, while the potential benefits of antioxidants in coffee and tea should also be considered. Further research is needed to establish the benefits and mechanisms of caffeinated beverages in the development of DR.This research was funded by grant PS09/01035 from Instituto de Salud Carlos III. N.A. and M.G-C. held a predoctoral fellowship from ISCIII (FI11/0008) and Ministerio de Educación, Cultura y Deporte (FPU15/03005), respectively. CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM; the current study was led by group CB15/00071) and CIBER Epidemiología y Salud Pública (CIBERESP) are an initiative from the Instituto de Salud Carlos III (Plan Nacional de I + D + I and Fondo Europeo de Desarrollo Regional)

    Neuromodulation Induced by Sitagliptin: A New Strategy for Treating Diabetic Retinopathy

    Get PDF
    Presynaptic proteins; Retinal neurodegeneration; SitagliptinProteínas presinápticas; Neurodegeneración retiniana; SitagliptinaProteïnes presinàptiques; Neurodegeneració retiniana; SitagliptinaDiabetic retinopathy (DR) involves progressive neurovascular degeneration of the retina. Reduction in synaptic protein expression has been observed in retinas from several diabetic animal models and human retinas. We previously reported that the topical administration (eye drops) of sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, prevented retinal neurodegeneration induced by diabetes in db/db mice. The aim of the present study is to examine whether the modulation of presynaptic proteins is a mechanism involved in the neuroprotective effect of sitagliptin. For this purpose, 12 db/db mice, aged 12 weeks, received a topical administration of sitagliptin (5 μL; concentration: 10 mg/mL) twice per day for 2 weeks, while other 12 db/db mice were treated with vehicle (5 μL). Twelve non-diabetic mice (db/+) were used as a control group. Protein levels were assessed by western blot and immunohistochemistry (IHC), and mRNA levels were evaluated by reverse transcription polymerase chain reaction (RT-PCR). Our results revealed a downregulation (protein and mRNA levels) of several presynaptic proteins such as synapsin I (Syn1), synaptophysin (Syp), synaptotagmin (Syt1), syntaxin 1A (Stx1a), vesicle-associated membrane protein 2 (Vamp2), and synaptosomal-associated protein of 25 kDa (Snap25) in diabetic mice treated with vehicle in comparison with non-diabetic mice. These proteins are involved in vesicle biogenesis, mobilization and docking, membrane fusion and recycling, and synaptic neurotransmission. Sitagliptin was able to significantly prevent the downregulation of all these proteins. We conclude that sitagliptin exerts beneficial effects in the retinas of db/db mice by preventing the downregulation of crucial presynaptic proteins. These neuroprotective effects open a new avenue for treating DR as well other retinal diseases in which neurodegeneration/synaptic abnormalities play a relevant role.This research was funded by grants from the Ministerio de Economía y Competitividad (PID2019-104225RB-I00) and the Instituto de Salud Carlos III (DTS18/0163, PI19/01215, and ICI20/00129). The study funder was not involved in the design of the study

    SOCS1-derived peptide administered by eye drops prevents retinal neuroinflammation and vascular leakage in experimental diabetes

    Get PDF
    Diabetic retinopathy; Neuroinflammation; Suppressors of cytokine signalingRetinopatía diabética; Neuroinflamación; Supresores de señalizadores de citoquinasRetinopatia diabètica; Neuroinflamació; Supressors de senyalitzadors de citoquinesCurrent treatments for diabetic retinopathy (DR) target late stages when vision has already been significantly affected. Accumulating evidence suggests that neuroinflammation plays a major role in the pathogenesis of DR, resulting in the disruption of the blood-retinal barrier. Suppressors of cytokine signaling (SOCS) are cytokine-inducible proteins that function as a negative feedback loop regulating cytokine responses. On this basis, the aim of the present study was to evaluate the effect of a SOCS1-derived peptide administered by eye drops (2 weeks) on retinal neuroinflammation and early microvascular abnormalities in a db/db mouse model. In brief, we found that SOCS1-derived peptide significantly reduced glial activation and neural apoptosis induced by diabetes, as well as retinal levels of proinflammatory cytokines. Moreover, a significant improvement of electroretinogram parameters was observed, thus revealing a clear impact of the histological findings on global retinal function. Finally, SOCS1-derived peptide prevented the disruption of the blood-retinal barrier. Overall, our results suggest that topical administration of SOCS1-derived peptide is effective in preventing retinal neuroinflammation and early microvascular impairment. These findings could open up a new strategy for the treatment of early stages of DR.This study was supported by grants from the Ministerio de Economia y Competitividad (PI16/00541, SAF2015-63696-R, PI14/00386, PI17/01495 and DTS-2017/00203). Cristina Sola-Adell is a recipient of a Predoctoral Research Grant from MINECO (BES-2013-064944). Joel Sampedro is a recipient of a Predoctoral Research Grant from AGAUR

    The db/db Mouse : a Useful Model for the Study of Diabetic Retinal Neurodegeneration

    Get PDF
    Background: To characterize the sequential events that are taking place in retinal neurodegeneration in a murine model of spontaneous type 2 diabetes (db/db mouse). Methods: C57BLKsJ-db/db mice were used as spontaneous type 2 diabetic animal model, and C57BLKsJ-db/+ mice served as the control group. To assess the chronological sequence of the abnormalities the analysis was performed at different ages (8, 16 and 24 weeks). The retinas were evaluated in terms of morphological and functional abnormalities [electroretinography (ERG)]. Histological markers of neurodegeneration (glial activation and apoptosis) were evaluated by immunohistochemistry. In addition glutamate levels and glutamate/aspartate transporter (GLAST) expression were assessed. Furthermore, to define gene expression changes associated with early diabetic retinopathy a transcriptome analyses was performed at 8 week. Furthermore, an additional interventional study to lower blood glucose levels was performed. Results: Glial activation was higher in diabetic than in non diabetic mice in all the stages (p<0.01). In addition, a progressive loss of ganglion cells and a significant reduction of neuroretinal thickness were also observed in diabetic mice. All these histological hallmarks of neurodegeneration were less pronounced at week 8 than at week 16 and 24. Significant ERG abnormalities were present in diabetic mice at weeks 16 and 24 but not at week 8. Moreover, we observed a progressive accumulation of glutamate in diabetic mice associated with an early downregulation of GLAST. Morphological and ERG abnormalities were abrogated by lowering blood glucose levels. Finally, a dysregulation of several genes related to neurotransmission and oxidative stress such as UCP2 were found at week 8. Conclusions: Our results suggest that db/db mouse reproduce the features of the neurodegenerative process that occurs in the human diabetic eye. Therefore, it seems an appropriate model for investigating the underlying mechanisms of diabetes-induced retinal neurodegeneration and for testing neuroprotective drugs

    Properties of the phage-shock-protein (Psp) regulatory complex that govern signal transduction and induction of the Psp response in Escherichia coli

    Get PDF
    The phage-shock-protein (Psp) response maintains the proton-motive force (pmf) under extracytoplasmic stress conditions that impair the inner membrane (IM) in bacterial cells. In Escherichia coli transcription of the pspABCDE and pspG genes requires activation of σ54-RNA polymerase by the enhancer-binding protein PspF. A regulatory network comprising PspF–A–C–B–ArcB controls psp expression. One key regulatory point is the negative control of PspF imposed by its binding to PspA. It has been proposed that under stress conditions, the IM-bound sensors PspB and PspC receive and transduce the signal(s) to PspA via protein–protein interactions, resulting in the release of the PspA–PspF inhibitory complex and the consequent induction of psp. In this work we demonstrate that PspB self-associates and interacts with PspC via putative IM regions. We present evidence suggesting that PspC has two topologies and that conserved residue G48 and the putative leucine zipper motif are determinants required for PspA interaction and signal transduction upon stress. We also establish that PspC directly interacts with the effector PspG, and show that PspG self-associates. These results are discussed in the context of formation and function of the Psp regulatory complex

    Effects of liposomal formulation of citicoline in experimental diabetes-induced retinal neurodegeneration

    Get PDF
    Diabetic retinopathy (DR) has been classically considered a microcirculatory disease of the retina. However, there is growing evidence to suggest that retinal neurodegeneration is also an early event in the pathogenesis of DR. Citicoline has been successfully used as a neuroprotective agent in the treatment of glaucoma but their effects on DR remain to be elucidated. On this basis, the main aim of the present study was to evaluate the effect of topical administration of citicoline in liposomal formulation on retinal neurodegeneration in db/db mouse and to investigate the underlying mechanisms of action. The treatment (citicoline or vehicle) was topically administered twice daily for 15 days. Retinal analyses were performed in vivo by electroretinography and ex vivo by using Western blot and immunofluorescence measurements. We found that the liposomal formulation of citicoline prevented glial activation and neural apoptosis in the diabetic retina. The main mechanism implicated in these beneficial effects were the inhibition of the downregulation of synaptophysin and its anti-inflammatory properties by means of preventing the upregulation of NF-κB and TNF-α (Tumor Necrosis Factor α) induced by diabetes. Overall, these results suggest that topical administration of citicoline in liposomal formulation could be considered as a new strategy for treating the early stages of DR
    corecore