125 research outputs found

    Comparison of bungee-aided and free-bouncing accelerations on trampoline

    Get PDF
    Trampolines remain the single best apparatus for the training of aerial acrobatics skills. Trampoline use has led to catastrophic injuries from poor landings. Passive injury prevention countermeasures such as specialized matting have been largely ineffective. Active injury countermeasures such as hand spotting, “throw-in” mats, and overhead spotting rigs provide the most effective methods. The recent addition of several bungee cords between the ropes and the gymnast’s spotting harness has resulted in altered teaching and coaching of trampoline-related acrobatics. Bungee cords have eliminated the need for a coach/spotter to manage the ropes during skill learning. The purpose of this study was to assess the influence of the addition of bungee cords with a traditional rope-based overhead spotting rig. There is a paucity of any research involving trampoline injury countermeasures. Ten experienced trampoline acrobatic athletes (5 males, 5 females) from the U.S. Ski and Snowboard Association Aerials National Team performed 10 bounces as high as they could control. A triaxial accelerometer (200 Hz) characterized 10 bungee cord aided bounces and 10 freebounces on a trampoline from each athlete. Bed contact times, peak accelerations, and average accelerations were obtained. The results supported our hypotheses that the bungeeaided bounces achieved only 40% (average) to 70% (peak) of the free-bouncing accelerations (all ρ 0.092). The bed contact time was approximately 65% longer during the bungee-aided bounces (ρ < 0.001). Bungee cords may reduce the harshness of landings on trampoline

    Effects of two workload-matched high-intensity interval training protocols on regional body composition and fat oxidation in obese men

    Get PDF
    © 2021 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3390/nu13041096The effects of two high-intensity interval training (HIIT) protocols on regional body composition and fat oxidation in men with obesity were compared using a parallel randomized design. Sixteen inactive males (age, 38.9 ± 7.3 years; body fat, 31.8 ± 3.9%; peak oxygen uptake, VO2peak, 30.9 ± 4.1 mL/kg/min; all mean ± SD) were randomly assigned to either HIIT10 (48 × 10 s bouts at 100% of peak power [Wpeak] with 15 s of recovery) or HIIT60 group (8 × 60 s bouts at 100% Wpeak with 90 s of recovery), and subsequently completed eight weeks of training, while maintaining the same diet. Analyses of variance (ANOVA) showed only a main effect of time (p 0.05) in the examined parameters. Total and trunk fat mass decreased by 1.81 kg (90%CI: −2.63 to −0.99 kg; p = 0.002) and 1.45 kg (90%CI: −1.95 to −0.94 kg; p < 0.001), respectively, while leg lean mass increased by 0.86 kg (90%CI: 0.63 to 1.08 kg; p < 0.001), following both HIIT protocols. HIIT increased peak fat oxidation (PFO) (from 0.20 ± 0.05 to 0.33 ± 0.08 g/min, p = 0.001), as well as fat oxidation over a wide range of submaximal exercise intensities, and shifted PFO to higher intensity (from 33.6 ± 4.6 to 37.6 ± 6.7% VO2peak, p = 0.039). HIIT, irrespective of protocol, improved VO2peak by 20.0 ± 7.2% (p < 0.001), while blood lactate at various submaximal intensities decreased by 20.6% (p = 0.001). In conclusion, both HIIT protocols were equally effective in improving regional body composition and fat oxidation during exercise in obese men.This work is part of the research project “SAFE PATH” (Stand up And Fight obEsity: Promoting Aerobic Training and Health) and was funded by The Coca-Cola Company.Published versio

    A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines

    Get PDF
    Background: The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences. Methods: Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models. Results: Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts. Conclusions: This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes’ elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications

    Influence of training status on high-intensity intermittent performance in response to ÎČ-alanine supplementation

    Get PDF
    Recent investigations have suggested that highly trained athletes may be less responsive to the ergogenic effects of ÎČ-alanine (BA) supplementation than recreationally active individuals due to their elevated muscle buffering capacity. We investigated whether training status influences the effect of BA on repeated Wingate performance. Forty young males were divided into two groups according to their training status (trained: T, and non-trained: NT cyclists) and were randomly allocated to BA and a dextrose-based placebo (PL) groups, providing four experimental conditions: NTPL, NTBA, TPL, TBA. BA (6.4 g day-1 ) or PL was ingested for 4 weeks, with participants completing four 30-s lower-body Wingate bouts, separated by 3 min, before and after supplementation. Total work done was significantly increased following supplementation in both NTBA (p = 0.03) and TBA (p = 0.002), and it was significantly reduced in NTPL (p = 0.03) with no difference for TPL (p = 0.73). BA supplementation increased mean power output (MPO) in bout 4 for the NTBA group (p = 0.0004) and in bouts 1, 2 and 4 for the TBA group (p ≀ 0.05). No differences were observed in MPO for NTPL and TPL. BA supplementation was effective at improving repeated high-intensity cycling performance in both trained and non-trained individuals, highlighting the efficacy of BA as an ergogenic aid for high-intensity exercise regardless of the training status of the individual

    Skeletal muscle and performance adaptations to high-intensity training in elite male soccer players: speed endurance runs versus small-sided game training.

    Get PDF
    PURPOSE: To examine the skeletal muscle and performance responses across two different exercise training modalities which are highly applied in soccer training. METHODS: Using an RCT design, 39 well-trained male soccer players were randomized into either a speed endurance training (SET; n = 21) or a small-sided game group (SSG; n = 18). Over 4 weeks, thrice weekly, SET performed 6-10 × 30-s all-out runs with 3-min recovery, while SSG completed 2 × 7-9-min small-sided games with 2-min recovery. Muscle biopsies were obtained from m. vastus lateralis pre and post intervention and were subsequently analysed for metabolic enzyme activity and muscle protein expression. Moreover, the Yo-Yo Intermittent Recovery level 2 test (Yo-Yo IR2) was performed. RESULTS: Muscle CS maximal activity increased (P < 0.05) by 18% in SET only, demonstrating larger (P < 0.05) improvement than SSG, while HAD activity increased (P < 0.05) by 24% in both groups. Na(+)-K(+) ATPase α1 subunit protein expression increased (P < 0.05) in SET and SSG (19 and 37%, respectively), while MCT4 protein expression rose (P < 0.05) by 30 and 61% in SET and SSG, respectively. SOD2 protein expression increased (P < 0.05) by 28 and 37% in SET and SSG, respectively, while GLUT-4 protein expression increased (P < 0.05) by 40% in SSG only. Finally, SET displayed 39% greater improvement (P < 0.05) in Yo-Yo IR2 performance than SSG. CONCLUSION: Speed endurance training improved muscle oxidative capacity and exercise performance more pronouncedly than small-sided game training, but comparable responses were in muscle ion transporters and antioxidative capacity in well-trained male soccer players

    Effects of ÎČ-alanine supplementation on exercise performance: a meta-analysis

    Get PDF
    Due to the well-defined role of ÎČ-alanine as a substrate of carnosine (a major contributor to H+ buffering during high-intensity exercise), ÎČ-alanine is fast becoming a popular ergogenic aid to sports performance. There have been several recent qualitative review articles published on the topic, and here we present a preliminary quantitative review of the literature through a meta-analysis. A comprehensive search of the literature was employed to identify all studies suitable for inclusion in the analysis; strict exclusion criteria were also applied. Fifteen published manuscripts were included in the analysis, which reported the results of 57 measures within 23 exercise tests, using 18 supplementation regimes and a total of 360 participants [174, ÎČ-alanine supplementation group (BA) and 186, placebo supplementation group (Pla)]. BA improved (P = 0.002) the outcome of exercise measures to a greater extent than Pla [median effect size (IQR): BA 0.374 (0.140–0.747), Pla 0.108 (−0.019 to 0.487)]. Some of that effect might be explained by the improvement (P = 0.013) in exercise capacity with BA compared to Pla; no improvement was seen for exercise performance (P = 0.204). In line with the purported mechanisms for an ergogenic effect of ÎČ-alanine supplementation, exercise lasting 60–240 s was improved (P = 0.001) in BA compared to Pla, as was exercise of >240 s (P = 0.046). In contrast, there was no benefit of ÎČ-alanine on exercise lasting <60 s (P = 0.312). The median effect of ÎČ-alanine supplementation is a 2.85% (−0.37 to 10.49%) improvement in the outcome of an exercise measure, when a median total of 179 g of ÎČ-alanine is supplemented
    • 

    corecore