57 research outputs found

    Ni, Co and Ni-Co-Modified Tungsten Carbides Obtained by an Electric Arc Method as Dry Reforming Catalysts

    Get PDF
    075-15-2021-710. Research on the synthesis of tungsten carbide was supported by the RF Ministry of Education and Science project No FSWW-2022-0018Dry reforming of methane (DRM), to produce synthesis gas, is one of the most important chemical reactions used for the industrial production of hydrogen and leads to the synthesis of hydrocarbons (liquid fuels) and other valuable products. A cost-effective alternative to active and stable noble metal DRM catalysts, with comparable catalytic performance, can be composite materials based on nickel, cobalt and transition metal carbides. In this line, the present work proposes a non-standard way to obtain dry reforming catalysts of Ni, Co and Ni-Co-modified tungsten carbide (WC) produced by an electric arc method. Different amounts of nickel, cobalt and their mixtures were deposited on tungsten carbide by deposition-precipitation with NaOH (DP) and incipient wetness impregnation (IWI) methods. The resulting materials were characterized by N2 adsorption-desorption, transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy, and their performance was evaluated in DRM. The composition and preparation method of catalysts predetermined their structural, textural and electronic properties, playing a decisive role in their activity for DRM. DP-prepared 20%Ni/WC material remained resistant to oxidation, both that of the active metal (nickel) and of the tungsten carbide, as well as to coking during DRM. This sample proved to be the most active and stable among all studied materials. Possibly, the resistance to oxidation and coking was due to a more efficient implementation of the oxidation/(re)carbonization cycle on the surface of this catalyst.publishersversionpublishe

    Supported silver nanoparticles as catalysts for liquid-phase betulin oxidation

    Get PDF
    The research is funded from the Russian Science Foundation project No. 18-73-00019, Tomsk Polytechnic University Competitiveness Enhancement Program, project VIU-ISHBMT-197/2020 and Tomsk Polytechnic University State Task "Science", project FSWW-2020-0011 (Russia). This work was partially supported by Fundacao para a Ciencia e a Tecnologia, Portugal, through project UIDB/00100/2020 of the Centro de Quimica Estrutural, by national funds though FCT, under the Scientific Employment Stimulus-Institutional Call (CEECINST/00102/2018) and the Associate Laboratory for Green Chemistry-LAQV financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020).Herein, it has been shown that betulin can be transformed into its biologically active oxo-derivatives (betulone, betulinic and betulonic aldehydes) by liquid-phase oxidation over supported silver catalysts under mild conditions. In order to identify the main factors determining the catalytic behavior of nanosilver catalysts in betulin oxidation, silver was deposited on various alumina supports (γ-alumina and boehmite) using deposition–precipitation with NaOH and incipient wetness impregnation methods, followed by treatment in H2 or O2. Silver catalysts and the corresponding supports were characterized by X-ray diffraction, nitrogen physisorption, inductively coupled plasma optical emission spectroscopy, photoelectron spectroscopy and transmission electron microscopy. It was found that the support nature, preparation and treatment methods predetermine not only the average Ag nanoparticles size and their distribution, but also the selectivity of betulin oxidation, and thereby, the catalytic behavior of Ag catalysts. In fact, the support nature had the most considerable effect. Betulin conversion, depending on the support, increased in the following order: Ag/boehmite < Ag/boehmite (calcined) < Ag/γ-alumina. However, in the same order, the share of side reactions catalyzed by strong Lewis acid centers of the support also increased. Poisoning of the latter by NaOH during catalysts preparation can reduce side reactions. Additionally, it was revealed that the betulin oxidation catalyzed by nanosilver catalysts is a structure-sensitive reaction.publishersversionpublishe

    Oxidation of 5-hydroxymethylfurfural on supported ag, au, pd and bimetallic pd-au catalysts: Effect of the support

    Get PDF
    Fundacao para a Ciencia e Tecnologia (FCT), Portugal, through project UIDB/00100/2020 of the Centro de Quimica Estrutural; Associate Laboratory for Green Chemistry-LAQV,financed by national funds from FCT/MCTES (UIDB/50006/2020); FCT Scientific Employment Stimulus-Institutional Call (CEECINST/00102/2018) and PTDC/QEQ-QIN/3967/2014; Tomsk Polytechnic University Competitiveness Enhancement Program project VIU-RSCBMT-197/2020; Russian Foundation of Basic Research, project 18-29-24037; Tomsk Polytechnic University State Task `Science' (project FSWW-2020-0011) andMICINN project CTQ2017-86170-R (Spain).Oxidation of 5-hydroxymethylfurfural (HMF), a major feedstock derived from waste/fresh biomass, into 2,5-furandicarboxylic acid (FDCA) is an important transformation for the production of biodegradable plastics. Herein, we investigated the effect of the support (unmodified and modified titania, commercial alumina, and untreated and treated Sibunit carbon) of mono-and bimetallic catalysts based on noble metals (Ag, Au, Pd) on selective HMF oxidation with molecular oxygen to FDCA under mild and basic reaction conditions. The higher selectivity to FDCA was obtained when metals were supported on Sibunit carbon (Cp). The order of noble metal in terms of catalyst selectivity was: Ag < Au < Pd < PdAu. Finally, FDCA production on the most efficient PdAu NPs catalysts supported on Sibunit depended on the treatment applied to this carbon support in the order: PdAu/Cp < PdAu/Cp-HNO3 < PdAu/Cp-NH4OH. These bimetallic catalysts were characterized by nitrogen adsorption-desorption, inductively coupled plasma atomic emission spectroscopy, high resolution transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Hammet indicator method and X-ray photoelectron spectroscopy. The functionalization of Sibunit surface by HNO3 and NH4OH led to a change in the contribution of the active states of Pd and Au due to promotion effect of N-doping and, as a consequence, to higher FDCA production. HMF oxidation catalyzed by bimetallic catalysts is a structure sensitive reaction.publishersversionpublishe

    The Effect of Sibunit Carbon Surface Modification with Diazonium Tosylate Salts of Pd and Pd-Au Catalysts on Furfural Hydrogenation

    Get PDF
    Funding Information: The research is funded by the Ministry of Education and Science of the Russian Federation Program № 075-03-2021-287/6. Sevastopol State University Research grant 42-01-09/169/2021-4 (Russia). Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Herein, we investigated the effect of the support modification (Sibunit carbon) with diazonium salts of Pd and Pd-Au catalysts on furfural hydrogenation under 5 bars of H2 and 50 °C. To this end, the surface of Sibunit (Cp) was modified with butyl (Cp-Butyl), carboxyl (Cp-COOH) and amino groups (Cp-NH2) using corresponding diazonium salts. The catalysts were synthesized by the sol immobilization method. The catalysts as well as the corresponding supports were characterized by Fourier transform infrared spectroscopy, N2 adsorption-desorption, inductively coupled plasma atomic emission spectroscopy, high resolution transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Hammet indicator method and X-ray photoelectron spectroscopy. The analysis of the results allowed us to determine the crucial influence of surface chemistry on the catalytic behavior of the studied catalysts, especially regarding selectivity. At the same time, the structural, textural, electronic and acid–base properties of the catalysts were practically unaffected. Thus, it can be assumed that the modification of Sibunit with various functional groups leads to changes in the hydrophobic/hydrophilic and/or electrostatic properties of the surface, which influenced the selectivity of the process.publishersversionpublishe

    Effect of the metal deposition order on structural, electronic and catalytic properties of tio2-supported bimetallic au-ag catalysts in 1-octanol selective oxidation

    Get PDF
    42-01-09/169/2021-4 CTQ2017-86170-RAu and Ag were deposited on TiO2 modified with Ce, La, Fe or Mg in order to obtain bimetallic catalysts to be used for liquid-phase oxidation of 1-octanol. The effects of the deposition order of gold and silver, and the nature of the support modifying additives and redox pretreatments on the catalytic properties of the bimetallic Au-Ag catalysts were studied. Catalysts were characterized by low-temperature nitrogen adsorption–desorption, energy dispersive spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy and ultraviolet-visible diffuse reflectance spectroscopy. It was found that pretreatments with hydrogen and oxygen at 300◦C significantly decreased the activity of AuAg catalysts (silver was deposited first) and had little effect on the catalytic properties of AgAu samples (gold was deposited first). The density functional theory method demonstrated that the adsorption energy of 1-octanol increased for all positively charged AuxAgyq (x + y = 10, with a charge of q = 0 or +1) clusters compared with the neutral counterparts. Lanthanum oxide was a very effective promoter for both monometallic and bimetallic gold and silver catalysts in the studied process.publishersversionpublishe

    Effect of gold electronic state on the catalytic performance of nano gold catalysts in n-octanol oxidation

    Get PDF
    UIDB/50006/2020 project VIU-RSCBMT-65/2019 project 18-29-24037 (Russia) MINECO project CTQ2017-86170-R (Spain)This study aims to identify the role of the various electronic states of gold in the catalytic behavior of Au/MxOy/TiO2 (where MxOy are Fe2O3 or MgO) for the liquid phase oxidation of n-octanol, under mild conditions. For this purpose, Au/MxOy/TiO2 catalysts were prepared by deposition-precipitation with urea, varying the gold content (0.5 or 4 wt.%) and pretreatment conditions (H2 or O2), and characterized by low temperature nitrogen adsorption-desorption, X-ray powder diffraction (XRD), energy dispersive spectroscopy (EDX), scanning transmission electron microscopy-high angle annular dark field (STEM HAADF), diffuse reflectance Fourier transform infrared (DRIFT) spectroscopy of CO adsorption, temperature-programmable desorption (TPD) of ammonia and carbon dioxide, and X-ray photoelectron spectroscopy (XPS). Three states of gold were identified on the surface of the catalysts, Au0, Au1+ and Au3+, and their ratio determined the catalysts performance. Based on a comparison of catalytic and spectroscopic results, it may be concluded that Au+ was the active site state, while Au0 had negative effect, due to a partial blocking of Au0 by solvent. Au3+ also inhibited the oxidation process, due to the strong adsorption of the solvent and/or water formed during the reaction. Density functional theory (DFT) simulations confirmed these suggestions. The dependence of selectivity on the ratio of Brønsted acid centers to Brønsted basic centers was revealed.publishersversionpublishe

    Gold nanoparticles supported on magnesium oxide for CO oxidation

    Get PDF
    Au was loaded (1 wt%) on a commercial MgO support by three different methods: double impregnation, liquid-phase reductive deposition and ultrasonication. Samples were characterised by adsorption of N2 at -96°C, temperature-programmed reduction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Upon loading with Au, MgO changed into Mg(OH)2 (the hydroxide was most likely formed by reaction with water, in which the gold precursor was dissolved). The size range for gold nanoparticles was 2-12 nm for the DIM method and 3-15 nm for LPRD and US. The average size of gold particles was 5.4 nm for DIM and larger than 6.5 for the other methods. CO oxidation was used as a test reaction to compare the catalytic activity. The best results were obtained with the DIM method, followed by LPRD and US. This can be explained in terms of the nanoparticle size, well known to determine the catalytic activity of gold catalysts
    corecore