1,032 research outputs found

    Semi-inclusive structure functions in the spectator model

    Get PDF
    We establish the relationship between distribution and fragmentation functions and the structure functions appearing in the cross section of polarized 1-particle inclusive deep-inelastic scattering. We present spectator model evaluations of these structure functions focusing on the case of an outgoing spin-1/2 baryon. Distribution functions obtained in the spectator model are known to fairly agree at low energy scales with global parameterizations extracted, for instance, from totally inclusive DIS data. Therefore, we expect it to give good hints on the functional dependence of the structure functions on the scaling variables x(Bjorken), z and on the transverse momentum of the observed outgoing hadron, P_{h\perp}. Presently, this dependence is not very well known, but experiments are planned in the near future.Comment: 19 pages, 16 figures, submitted to Eur. Phys. J.

    Application of crossflow ultrafiltration for scaling up the purification of a recombinant ferritin

    Get PDF
    Ferritin proteins are taking center stage as smart nanocarriers for drug delivery due to their hollow cage-like structures and their unique 24-meric assembly. Among all ferritins, the chimeric Archaeoglobus ferritin (HumFt) is able assemble/disassemble varying the ionic strength of the medium while recognizing human TfR1 receptor overexpressed in cancer cells. In this paper we present a highly efficient, large scale purification protocol mainly based on crossflow ultrafiltration, starting from fermented bacterial paste. This procedure allows one to obtain about 2 g of purified protein starting from 100 g of fermented bacterial paste. The current procedure can easily remove contaminant proteins as well as DNA molecules in the absence of expensive and time consuming chromatographic steps

    Azimuthal spin asymmetries in light-cone constituent quark models

    Full text link
    We present results for all leading-twist azimuthal spin asymmetries in semi-inclusive lepton-nucleon deep-inelastic scattering due to T-even transverse-momentum dependent parton distribution functions on the basis of a light-cone constituent quark model. Attention is paid to discuss the range of applicability of the model, especially with regard to the scale dependence of the observables and the transverse-momentum dependence of the distributions. We find good agreement with available experimental data and present predictions to be further tested by future CLAS, COMPASS and HERMES data.Comment: 23 pages, 14 figures, 1 tabl

    Transverse momentum dependent parton distributions and azimuthal asymmetries in light-cone quark models

    Full text link
    We review the information on the spin and orbital angular momentum structure of the nucleon encoded in the T-even transverse momentum dependent parton distributions within light-cone quark models. Model results for azimuthal spin asymmetries in semi-inclusive lepton-nucleon deep-inelastic scattering are discussed, showing a good agreement with available experimental data and providing predictions to be further tested by future CLAS, COMPASS and HERMES data.Comment: 6 pages, 4 figures; proceedings of the "XIII Workshop On High Energy Spin Physics Dubna Spin 2009", 1-5 September 2009, Dubna, Russi

    TMDs and Azimuthal Spin Asymmetries in a Light-Cone Quark Model

    Get PDF
    The main properties of the leading-twist transverse momentum dependent parton distributions in a light-cone constituent quark model of the nucleon are reviewed, with focus on the role of the spin-spin and spin-orbit correlations of quarks. Results for azimuthal single spin asymmetries in semi-inclusive deep inelastic scattering are also discussed.Comment: Proceedings of SPIN2008, 6-11 October 2008, Charlottesville, VA, US

    Nuclear transparency in quasielastic A(e,e'p): intranuclear cascade versus eikonal approximation

    Get PDF
    The problem of nuclear propagation through the nuclear medium in quasielastic A(e,e'p) reactions is discussed in the kinematic range 1<Q^2<7 (GeV/c)^2. The coefficient of nuclear transparency is calculated for each Q^2 in the framework of the intranuclear cascade model (INC) and of the eikonal approximation (EA). The predictions of both models are in good agreement with each other and with experimental data recently obtained at SLAC, BATES and TJNAF. The EA gives an explanation of the Q^2 behaviour of the transparency coefficient as a kinematic effect related to the superposition of contributions from each target shell.Comment: RevTeX, 23 pages, 11 figures separately, submitted to Phys. Rev.

    Calculation of fragmentation functions in two-hadron semi-inclusive processes

    Get PDF
    We investigate the properties of interference fragmentation functions arising from the emission of two leading hadrons inside the same jet for inclusive lepton-nucleon deep-inelastic scattering. Using an extended spectator model for the mechanism of the hadronization, we give a complete calculation and numerical estimates for the examples of a proton-pion pair produced with invariant mass on the Roper resonance, and of two pions produced with invariant mass close to the ρ\rho mass. We discuss azimuthal angular dependence of the leading order cross section to point up favourable conditions for extracting transversity from experimental data.Comment: 5 pages, 3 figures in .eps format, AIP and epsfig styles included, to appear in proceedings of "Second Workshop on Physics with an Electron Polarized Light Ion Collider", MIT, Sept. 14-16, 200

    High-momentum proton removal from 16O and the (e,e'p) cross section

    Get PDF
    The cross section for the removal of high-momentum protons from 16O is calculated for high missing energies. The admixture of high-momentum nucleons in the 16O ground state is obtained by calculating the single-hole spectral function directly in the finite nucleus with the inclusion of short-range and tensor correlations induced by a realistic meson-exchange interaction. The presence of high-momentum nucleons in the transition to final states in 15N at 60-100 MeV missing energy is converted to the coincidence cross section for the (e,e'p) reaction by including the coupling to the electromagnetic probe and the final state interactions of the outgoing proton in the same way as in the standard analysis of the experimental data. Detectable cross sections for the removal of a single proton at these high missing energies are obtained which are considerably larger at higher missing momentum than the corresponding cross sections for the p-wave quasihole transitions. Cross sections for these quasihole transitions are compared with the most recent experimental data available.Comment: 26 RevTex pages, 7 ps figure
    corecore