15 research outputs found

    Monitoring Reaction Intermediates in Plasma-Driven SO2, NO, and NO2 Remediation Chemistry Using in Situ SERS Spectroscopy

    Get PDF
    In situ surface-enhanced Raman scattering (SERS) spectroscopy is used to identify the key reaction intermediates during the plasma-based removal of NO and SO2 under dry and wet conditions on Ag nanoparticles. Density functional theory (DFT) calculations are used to confirm the experimental observations by calculating the vibrational modes of the surface-bound intermediate species. Here, we provide spectroscopic evidence that the wet plasma increases the SO2 and the NOx removal through the formation of highly reactive OH radicals, driving the reactions to H2SO4 and HNO3, respectively. We observed the formation of SO3 and SO4 species in the SO2 wet-plasma-driven remediation, while in the dry plasma, we only identified SO3 adsorbed on the Ag surface. During the removal of NO in the dry and wet plasma, both NO2 and NO3 species were observed on the Ag surface; however, the concentration of NO3 species was enhanced under wet-plasma conditions. By closing the loop between the experimental and DFT-calculated spectra, we identified not only the adsorbed species associated with each peak in the SERS spectra but also their orientation and adsorption site, providing a detailed atomistic picture of the chemical reaction pathway and surface interaction chemistry.Fil: Li, Shujin. University of Southern California; Estados UnidosFil: Zhao, Bofan. University of Southern California; Estados UnidosFil: Aguirre, Alejo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Wang, Yu. University of Southern California; Estados UnidosFil: Li, Ruoxi. University of Southern California; Estados UnidosFil: Yang, Sisi. University of Southern California; Estados UnidosFil: Aravind, Indu. University of Southern California; Estados UnidosFil: Cai, Zhi. University of Southern California; Estados UnidosFil: Chen, Ran. University of Southern California; Estados UnidosFil: Jensen, Lasse. University of Southern California; Estados UnidosFil: Cronin, Stephen B.. University of Southern California; Estados Unido

    Face liveness detection by rPPG features and contextual patch-based CNN

    No full text
    Abstract Face anti-spoofing plays a vital role in security systems including face payment systems and face recognition systems. Previous studies showed that live faces and presentation attacks have significant differences in both remote photoplethysmography (rPPG) and texture information, we propose a generalized method exploiting both rPPG and texture features for face anti-spoofing task. First, multi-scale long-term statistical spectral (MS-LTSS) features with variant granularities are designed for representation of rPPG information. Second, a contextual patch-based convolutional neural network (CP-CNN) is used for extracting global-local and multi-level deep texture features simultaneously. Finally, weight summation strategy is employed for decision level fusion, which helps to generalize the method for not only print attack and replay attack but also mask attack. Comprehensive experiments were conducted on five databases, namely 3DMAD, HKBU-Mars VI, MSU-MFSD, CASIA-FASD, and OULU-NPU, to show the superior results of the proposed method compared with state-of-the-art methods

    Phosphorylation-dependent deubiquitinase OTUD3 regulates YY1 stability and promotes colorectal cancer progression

    No full text
    Abstract Yin Yang 1 (YY1) is a key transcription factor that has been implicated in the development of several malignancies. The stability of YY1 is regulated by the ubiquitin-proteasome system. The role of deubiquitinases (DUBs) and their impact on YY1 remain to be fully elucidated. In this study, we screened for ubiquitin-specific proteases that interact with YY1, and identified OTUD3 as a DUB for YY1. Over-expressed OTUD3 inhibited YY1 degradation, thereby increasing YY1 protein levels, whereas OTUD3 knockdown or knockout promoted YY1 degradation, thereby decreasing the proliferation of colorectal cancer (CRC). Furthermore, PLK1 mediates OTUD3 S326 phosphorylation, which further enhances OTUD3 binding and deubiquitination of YY1. In CRC tissues, elevated the expression level of OTUD3 and YY1 were significantly associated with poor prognostic outcomes. These findings suggest that the OTUD3-YY1 pathway has therapeutic potential in CRC, and OTUD3 plays a critical role in regulating YY1

    Table_1_Functional characterization of two 3-dehydroquinases of AroQ1 and AroQ2 in the shikimate pathway and expression of genes for the type III secretion system in Ralstonia solanacearum.docx

    No full text
    The shikimate pathway is a general route for the biosynthesis of aromatic amino acids (AAAs) in many microorganisms. A 3-dehydroquinase, AroQ, controls the third step of the shikimate pathway that catalyzes the formation of 3-dehydroquinate from 3-dehydroshikimate via a trans-dehydration reaction. Ralstonia solanacearum harbors two 3-dehydroquinases, AroQ1 and AroQ2, sharing 52% similarity in amino acids. Here, we demonstrated that two 3-dehydroquinases, AroQ1 and AroQ2, are essential for the shikimate pathway in R. solanacearum. The growth of R. solanacearum was completely diminished in a nutriment-limited medium with the deletion of both aroQ1 and aroQ2, while substantially impaired in planta. The aroQ1/2 double mutant was able to replicate in planta but grew slowly, which was ~4 orders of magnitude less than the parent strain to proliferate to the maximum cell densities in tomato xylem vessels. Moreover, the aroQ1/2 double mutant failed to cause disease in tomato and tobacco plants, whereas the deletion of either aroQ1 or aroQ2 did not alter the growth of R. solanacearum or pathogenicity on host plants. Supplementary shikimic acid (SA), an important intermediate of the shikimate pathway, substantially restored the diminished or impaired growth of aroQ1/2 double mutant in a limited medium or inside host plants. The necessity of AroQ1 and AroQ2 on the pathogenicity of solanacearum toward host plants was partially due to insufficient SA inside host plants. Moreover, the deletion of both aroQ1 and aroQ2 significantly impaired the expression of genes for the type III secretion system (T3SS) both in vitro and in planta. Its involvement in the T3SS was mediated through the well-characterized PrhA signaling cascade and was independent of growth deficiency under nutrient-limited conditions. Taken together, R. solanacearum 3-dehydroquinases play important roles in bacterial growth, the expression of the T3SS, and pathogenicity in host plants. These results could extend our insights into the understanding of the biological function of AroQ and the sophisticated regulation of the T3SS in R. solanacearum.</p

    Optimization of Mg–Al Layered Double Hydroxide Film Preparation and Corrosion Resistance Study on AZ91D Mg Alloy by Multivariate Polynomial Regression Fitting

    No full text
    Layered double hydroxide (LDH) films have received extensive attention for their unique physical barrier function and ion exchange properties, which make them promising candidates for corrosion protection of magnesium alloys. In this paper, we used the multiple polynomial regression fitting method to establish a regression equation for the electrochemical corrosion resistance with the reaction temperature (T), pH, and reaction time (t) of the Mg–Al LDH film on the AZ91D magnesium alloy. The goodness of fit, confidence, and residual analyses confirmed the high accuracy of the model equation. According to the calculation using the fmincon function, the best corrosion resistance of the prepared samples could be achieved when the parameters are T = 135 °C, pH = 12.0, and t = 15 h. Then, the experimental results showed that the corrosion current density (Icorr) of the obtained LDH film under the above conditions could be 1.07 × 10–7 A/cm2, approximately 3 orders of magnitude lower than the magnesium alloy substrate, after immersion in a 3.5 wt % NaCl solution for 180 h, the surface structure of the LDH film did not change significantly, and the Icorr was still 2 orders of magnitude higher than that of the magnesium alloy substrate. Hence, a synergistic effect equation for the reaction temperature, pH, and reaction time on the corrosion resistance of the LDH film on a magnesium alloy surface prepared by the hydrothermal method was obtained. Moreover, using this equation, we obtained an LDH film with good corrosion resistance and durability, providing theoretical guidance for optimizing the process of preparing the LDH film by the hydrothermal method in practical applications

    Photoexcited Hot Electron Catalysis in Plasmon-Resonant Grating Structures with Platinum, Nickel, and Ruthenium Coatings

    No full text
    We report the electrochemical potential dependence of photocatalysis produced by hot electrons in plasmon-resonant grating structures. Here, corrugated metal surfaces with a period of 520 nm are illuminated with 785 nm wavelength laser light swept as a function of incident angle. At incident angles corresponding to plasmon-resonant excitation, we observe sharp peaks in the electrochemical photocurrent and dips in the photoreflectance consistent with the conditions under which there is wavevector matching between the incident light and the spacing between the lines in the grating. In addition to the bare plasmonic metal surface (i.e., Au), which is catalytically inert, we have measured grating structures with a thin layer of Pt, Ru, and Ni catalyst coatings. For the bare Au grating, we observe that the plasmon-resonant photocurrent remains relatively featureless over the applied potential range from −0.8 to +1.2 V vs NHE. For the Pt-coated grating, we observe a sharp peak around −0.3 V vs NHE, three times larger than the bare Au grating, and near complete suppression of the oxidation half-reaction, reflecting the reducing nature of Pt as a good hydrogen evolution reaction catalyst. The photocurrent associated with the Pt-coated grating is less noisy and produces higher photocurrents than the bare Au grating due to the faster kinetics (i.e., charge transfer) associated with the Pt-coated surface. The plasmon-resonant grating structures enable us to compare plasmon-resonant excitation with that of bulk metal interband absorption simply by rotating the polarization of the light while leaving all other parameters of the experiment fixed (i.e., wavelength, potential, electrochemical solution, sample surface, etc.). A 64X plasmon-resonant enhancement (i.e., p-to-s polarized photocurrent ratio) is observed for the Pt-coated grating compared to 28X for the bare grating. The nickel-coated grating shows an increase in the hot-electron photocurrent enhancement in both oxidation and reduction half-reactions. Similarly, Ru-coated gratings show an increase in hot-electron photocurrents in the oxidation half-reaction compared to the bare Au grating. Plasmon-resonant enhancement factors of 36X and 15X are observed in the p-to-s polarized photocurrent ratio for the Ni and Ru gratings, respectively

    Hot Electron Plasmon-Resonant Grating Structures for Enhanced Photochemistry: A Theoretical Study

    No full text
    Metallic grating structures have been shown to provide an effective platform for generating hot electrons and driving electrochemical reactions. Here, we present a systematic theoretical study of the surface plasmon resonance in different corrugated metallic grating structures using computational electromagnetic tools (i.e., the finite difference time domain (FDTD) method). We identify the corrugation parameters that produce maximum resonant field enhancement at commonly used wavelengths for photocatalytic applications (633 nm and 785 nm) in different material systems, including Ag, Au, Cu, Al, and Pt. The absorption spectra of each grating structure have been fitted with the analytical equation obtained from Coupled Mode Theory. We then extracted the absorptive and radiative loss rates. The field enhancement can be maximized by matching the absorption and radiation losses via tuning the geometric parameters. We could improve the average field enhancement of 633 nm and 785 nm modes by a factor of 1.8× and 3.8× for Ag, 1.4× and 3.6× for Au, and 1.2× and 2.6× for Cu. The optimum structures are found to be shallower for Ag, Au, and Cu; deeper for Pt; and to almost remain the same for Al. The gratings become flat for all the metals for increasing the average field enhancement. Overall, Ag and Au were found to be the best in terms of overall field enhancement while Pt had the worst performance
    corecore