1,427 research outputs found

    Final report on environmental effects of the second Hampton Roads bridge-tunnel construction to Virginia Department of Highways : effects on benthic communities

    Get PDF
    A sampling program was undertaken from July 1973 to June 1974, to assess the effects of construction of the second Hampton Roads Bridge-Tunnel on the benthic communities in the vicinity. Macrobenthic animals (defined as those retained by a 1.0 mm mesh sieve) were quantitatively sampled along three transects perpendicular to the new tunnel and in and around the fill borrow areas nearby on Willoughby Bank and Sewell\u27s Point Spit. The effects of construction practices on the benthic communities·was assessed through interpretation of faunal composition, sediment characteristics, and bottom profiles

    Wild mammals as economic goods and implications for their conservation

    No full text
    In social-ecological systems, human activities and animal distribution are interrelated. Any effort at studying wildlife abundance therefore requires the integration of detailed socioeconomic context into species distribution models. Wild mammals have always been an important resource for humankind, and concepts of economic goods provide an analytical framework to deduce relevant socioeconomic factors that shape wild mammal–human relationships and consequences for the spatial distribution patterns of wild mammals. We estimated the effects of the human population on wild mammals in a rural area in the Republic of Guinea, West Africa. We related large mammal survey data via statistical models to detailed socioeconomic information about the human population in the same area. We compared models, taking account of the human population in different ways, and found that wild mammal abundance was better explained by human factors other than human population density. Although human population density had a negative effect on wild mammals, the effect of market integration and food taboos were more important and not accounted for by human population density alone. Additionally, the analysis did not provide evidence of higher mammal abundance in classified forests, which one would assume if conservation interventions aimed at reducing hunting were implemented. Beyond doubt, the relationship between humans and wild mammals is highly complex and species- and context-specific. To understand mammal–human relationships in the wider context of social-ecological systems, an in-depth knowledge of the socioeconomic characteristics of a human population is needed to identify crucial links and driving mechanisms

    Japan : Gefahren der Natur

    Get PDF
    No abstract available

    Travel linearity and speed of human foragers and chimpanzees during their daily search for food in tropical rainforests

    Get PDF
    To understand the evolutionary roots of human spatial cognition, researchers have compared spatial abilities of humans and one of our closest living relatives, the chimpanzee (Pan troglodytes). However, how humans and chimpanzees compare in solving spatial tasks during real-world foraging is unclear to date, as measuring such spatial abilities in natural habitats is challenging. Here we compared spatial movement patterns of the Mbendjele BaYaka people and the Taï chimpanzees during their daily search for food in rainforests. We measured linearity and speed during off-trail travels toward out-of-sight locations as proxies for spatial knowledge. We found similarly high levels of linearity in individuals of Mbendjele foragers and Taï chimpanzees. However, human foragers and chimpanzees clearly differed in their reactions to group size and familiarity with the foraging areas. Mbendjele foragers increased travel linearity with increasing familiarity and group size, without obvious changes in speed. This pattern was reversed in Taï chimpanzees. We suggest that these differences between Mbendjele foragers and Taï chimpanzees reflect their different ranging styles, such as life-time range size and trail use. This result highlights the impact of socio-ecological settings on comparing spatial movement patterns. Our study provides a first step toward comparing long-range spatial movement patterns of two closely-related species in their natural environments

    Non-Invasive Body Temperature Measurement of Wild Chimpanzees Using Fecal Temperature Decline

    Get PDF
    New methods are required to increase our understanding of pathologic processes in wild mammals. We developed a noninvasive field method to estimate the body temperature of wild living chimpanzees habituated to humans, based on statistically fitting temperature decline of feces after defecation. The method was established with the use of control measures of human rectal temperature and subsequent changes in fecal temperature over time. The method was then applied to temperature data collected from wild chimpanzee feces. In humans, we found good correspondence between the temperature estimated by the method and the actual rectal temperature that was measured (maximum deviation 0.22 C). The method was successfully applied and the average estimated temperature of the chimpanzees was 37.2 C. This simple-to-use field method reliably estimates the body temperature of wild chimpanzees and probably also other large mammals.Human Evolutionary Biolog

    Effective sociodemographic population assessment of elusive species in ecology and conservation management

    Get PDF
    Wildlife managers are urgently searching for improved sociodemographic population assessment methods to evaluate the effectiveness of implemented conservation activities. These need to be inexpensive, appropriate for a wide spectrum of species and straightforward to apply by local staff members with minimal training. Furthermore, conservation management would benefit from single approaches which cover many aspects of population assessment beyond only density estimates, to include for instance social and demographic structure, movement patterns, or species interactions. Remote camera traps have traditionally been used to measure species richness. Currently, there is a rapid move toward using remote camera trapping in density estimation, community ecology, and conservation management. Here, we demonstrate such comprehensive population assessment by linking remote video trapping, spatially explicit capture–recapture (SECR) techniques, and other methods. We apply it to three species: chimpanzees Pan troglodytes troglodytes, gorillas Gorilla gorilla gorilla, and forest elephants Loxodonta cyclotis in Loango National Park, Gabon. All three species exhibited considerable heterogeneity in capture probability at the sex or group level and density was estimated at 1.72, 1.2, and 1.37 individuals per km(2) and male to female sex ratios were 1:2.1, 1:3.2, and 1:2 for chimpanzees, gorillas, and elephants, respectively. Association patterns revealed four, eight, and 18 independent social groups of chimpanzees, gorillas, and elephants, respectively: key information for both conservation management and studies on the species' ecology. Additionally, there was evidence of resident and nonresident elephants within the study area and intersexual variation in home range size among elephants but not chimpanzees. Our study highlights the potential of combining camera trapping and SECR methods in conducting detailed population assessments that go far beyond documenting species diversity patterns or estimating single species population size. Our study design is widely applicable to other species and spatial scales, and moderately trained staff members can collect and process the required data. Furthermore, assessments using the same method can be extended to include several other ecological, behavioral, and demographic aspects: fission and fusion dynamics and intergroup transfers, birth and mortality rates, species interactions, and ranging patterns
    • …
    corecore