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Abstract: Cultural traits spread via multiple mechanisms among individuals within social groups, 23 

including transmission biases which occur when subordinates copy from dominants (prestige 24 

transmission) or common cultural trait variants are favored over rare ones (consensus transmission). Most 25 

animal populations are subdivided into social groups where cultural learning occurs, yet theoretical 26 

studies of cultural trait transmission have tended to focus on within-group transmission dynamics. Thus, 27 

we lack an understanding of the factors that influence the spread of cultural traits in socially structured 28 

populations. We developed an agent-based model of cultural transmission in which a trait arises in one 29 

individual and either persists until a stable population equilibrium is reached or goes extinct. With this 30 

model, we systematically varied group size, rates of dispersal among groups, mortality rates, transmission 31 

characteristics, the benefit of the cultural trait (including possibly negative benefits, i.e. costly traits), and 32 

whether individuals disperse locally or randomly to any group. We used generalized linear models to 33 

examine how changes in these parameters influence the probability of trait extinction, equilibrium 34 

prevalence, and the time to equilibrium. Four traits increased the probability of extinction: smaller group 35 

size, higher background mortality, lower transmission rate, and more costly traits. Local dispersal and 36 

biased transmission mechanisms (prestige and consensus) had no significant impacts on extinction 37 

probability, and similar patterns were found for equilibrium prevalence. By comparison, we found that a 38 

lower dispersal rate and local dispersal slowed the time required for a trait to reach equilibrium, as did 39 

smaller groups, lower transmission rates, and lower costs. Although increasing costs increased extinction 40 

rates, even costly traits sometimes persisted in the simulated populations. Collectively, these analyses 41 

provide new insights into the dynamics of cultural traits in socially structured populations, including that 42 

prestige and consensus transmission can have weaker effects than other factors associated with 43 

demographic and social conditions. In addition, local dispersal and a lower dispersal probability reduced 44 

the rate of trait spread but not its prevalence in the population. 45 

 46 

Keywords: social systems, culture, transmission, individual-based model, social learning. 47 
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A striking feature of human evolution is the incredible diversity of cultures that exist around the world. 48 

For example, linguists have counted over 6,000 languages (Gordon 2005), and humans are thought to 49 

practice more than 4,300 religions (faith groups). Many human cultural traits are likely to be adaptive, 50 

such as those related to resource allocation and health practices, and are thus subject to natural selection 51 

(Mesoudi et al. 2004). Other cultural traits, such as decorations on pottery, are probably driven less by 52 

natural selection, but they may provide social or sexual benefits that indirectly translate to higher 53 

reproduction. Some persistent cultural traits in humans are even associated with costs. For example, a 54 

celibate priesthood dramatically reduces the reproductive success of individuals that become priests, 55 

while scarification, excision and circumcision increase the risks of lethal infections, especially in societies 56 

living without access to safe medical practices. Potential cultural traditions also have been documented in 57 

many nonhuman systems, including nut cracking in chimpanzees (Boesch et al. 1994; Boesch and 58 

Boesch-Achermann 2000), potato washing in Japanese macaques (Kawai 1965), and New Caledonian 59 

crows that use tools to obtain invertebrates from the vegetation (Hunt 2003). Understanding the spread of 60 

cultural traits in non-human systems could provide insights to human evolution and the factors leading to 61 

the explosive growth of cultural traits in the human lineage. 62 

A critical question in studies of cultural evolution involves features that impact the dynamics of 63 

cultural traits, both in terms of the proportion of individuals that express the trait and the rate at which the 64 

behavior spreads through a population. In addition to the cost or benefit of the trait in question, two 65 

factors are thought to be important to the spread of cultural traits: the mechanism by which behaviors are 66 

learned and the social context in which transmission takes place. First, concerning mechanisms, cultural 67 

transmission usually occurs through social learning, in which an individual learns a new behavior by 68 

watching other individuals perform the behavior. In nonhuman primates, for example, social learning has 69 

been proposed in the case of potato washing in Japanese macaques and nut-cracking in chimpanzees 70 

(Kawai 1965; Boesch and Boesch-Achermann 2000). Importantly, different models of cultural 71 

transmission may operate, depending on the social system in which the individual is embedded and the 72 

mechanisms by which traits are acquired. For example, individuals may be more likely to copy the 73 
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behaviors of more dominant individuals, which would be adaptive if dominants possess behavioral traits 74 

that made them more successful (Boesch and Tomasello 1998; Boyd and Richerson 1985; Henrich and 75 

McElreath 2003). Similarly, individuals may be more likely to adopt traits when more individuals in the 76 

group express the trait through a “conformity” or “majority rule” mechanism (Boesch and Tomasello 77 

1998; Henrich and McElreath 2003, hereafter called consensus transmission). While these transmission 78 

biases are not mutually exclusive, neither are they completely congruent. 79 

Second, social context is likely to be important for the spread of cultural traits. At the population 80 

level, most primates and humans live in socially structured populations, and the limited evidence 81 

available suggests that cultural traits tend to spread more commonly among members of the same social 82 

group than between groups (Kawamura 1959; Boesch 2003; Leca et al. 2007). Within social groups, the 83 

rate of cultural transmission is expected to be higher when group sizes are larger, with larger numbers of 84 

more tolerant individuals providing more opportunities for invention and social learning (van Schaik et al. 85 

1999). Opportunities for learning can be modified by other factors, such as proximity of individuals and 86 

their capacity for social learning (van Schaik and Pradhan 2003). Mortality rates and movement between 87 

social groups can also be important in a socially structured population. If dispersal occurs only between 88 

neighboring groups and at a low rate, for example, then the trait in question may take longer to establish 89 

in the larger population, and will thus be more prone to cultural extinction if the group is lost due to other 90 

factors. Similarly, if individuals who possess a costly cultural trait die at a higher rate, fewer other 91 

individuals will have an opportunity to learn the skills that are needed to express the behavior.  92 

In this manuscript, we use an agent-based model (Grimm and Railsback 2005) to investigate how 93 

cultural traits spread through animal social systems, focusing in particular on features involving group 94 

size, dispersal, and background mortality (i.e., a death rate that is independent of expressing the cultural 95 

trait). We also examine how different mechanisms of social learning – specifically involving prestige and 96 

consensus models – influence the spread of cultural traits, and how different probabilities of acquiring the 97 

trait and the selective benefits (or costs) of the trait affect transmission dynamics. The model is spatially 98 
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explicit and incorporates three social transmission mechanisms, and individuals can disperse either locally 99 

(a spatial model) or randomly to any of the groups (a non-spatial model). In addition, the model allows 100 

for variation in group size, dispersal rates, mortality, and the selective benefit (or cost) of the cultural trait 101 

(expressed by adjusting the baseline mortality rate among individuals with the trait). The model can 102 

therefore be applied to study cultural traits in a wide range of systems in which individuals live in socially 103 

structured populations, including humans, non-human primates, and other animals. Our work adds to a 104 

growing number of agent-based models of cultural trait transmission, including in the context of foraging 105 

(van der Post and Hogeweg 2006, 2008) and the spread of traits through social networks (Franz and Nunn 106 

2009). 107 

Social learning is a key component of the model. We call the two roles in this exchange the 108 

observer, who learns the behavior, and the performer, who exhibits the behavior and therefore serves as 109 

the role model for social learning to take place. We investigated three different transmission mechanisms 110 

(Boesch and Tomasello 1998; Henrich and McElreath 2003). The first transmission mechanism, referred 111 

to as the random transmission model, is the simplest. In this scenario the probability of cultural 112 

transmission between two individuals is independent of sex, social affiliation, the proportion of group-113 

mates with the trait, and dominance rank. The other mechanisms represent modifications of the random 114 

model. In the prestige transmission model, transmission probabilities are positively correlated with the 115 

dominance rank of the individual expressing the trait (Boyd and Richerson 1985; Henrich and Gil-White 116 

2001). Consensus transmission addresses the importance of social conformity, with increasing probability 117 

that an individual adopts a trait as the proportion of group-mates expressing the trait increases (Boyd and 118 

Richerson 1985; Henrich and Boyd 1998). We designed the simulation model so that the mean rate of 119 

transmission would be approximately equal across the three transmission mechanisms.  120 

We investigated four main questions regarding the relative impacts of social system and 121 

transmission characteristics on the spread of cultural traits. In particular we were interested in how these 122 
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features interact to determine the probability of extinction, the equilibrium proportion of individuals with 123 

the trait, and the time to equilibrium: 124 

1. Does local dispersal in a spatially explicit model (i.e., local dispersal) produce different outcomes 125 

than a non-spatial model, in which dispersing individuals can move to any social group? Random 126 

movement from one group to any other group increases the probability that a dispersing individual 127 

with the trait will land in a group that has yet to experience the trait. Once within a group, it is 128 

expected to spread rapidly. Thus, random movement should increase the rate of trait spread and favor 129 

the establishment of traits in the population. In contrast, local dispersal should slow the rate of 130 

cultural dispersion at the population level. Less is known about how local dispersal impacts the 131 

prevalence of a trait or its probability of extinction, but we expect that spatially localized traits are 132 

more likely to go extinct through stochastic processes.   133 

2. Do cultural traits spread more rapidly – and reach higher prevalence – in populations composed of 134 

larger social groups, or in populations characterized by higher rates of individual movement among 135 

groups? These two social parameters could interact, with larger groups potentially producing more 136 

migrants that carry the trait to other groups. Here, we focus on actual movement of individuals 137 

between groups (migration), thus assuming that casual observation of individuals in neighboring 138 

groups is insufficient for social learning to occur (cf. Boyd and Richerson 2002).  139 

3. How does mortality impact the prevalence of a cultural trait in a population? In epidemiological 140 

models, higher rates of mortality remove individuals carrying a disease from the population, making 141 

it more difficult for the pathogen to become established and reducing overall prevalence (Anderson 142 

and May 1979; Thrall et al. 2000). Similar principles should apply to cultural traits. Thus, increased 143 

background mortality – i.e., mortality that is independent of the expression of the cultural trait – 144 

should negatively impact the equilibrium prevalence of the trait. The selective advantage of cultural 145 

traits should modify these patterns. Higher benefits (holding costs constant) should lead to lower 146 

mortality among individuals with the trait and result in more opportunities for the trait to spread. 147 
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Traits with a net cost should lead to the opposite pattern, resulting in lower prevalence and increased 148 

probability that the trait will go extinct. 149 

4. How do social learning mechanisms influence the spread of cultural traits? One aspect of social 150 

learning involves the probability that a trait will spread from one individual to another. A higher rate 151 

of transmission (β) could increase prevalence, or reduce the time until equilibrium prevalence is 152 

reached. Another aspect of social learning involves the transmission mechanisms discussed above, 153 

which effectively modify β based on individual characteristics (prestige transmission) or prevalence 154 

of the trait in a group (consensus transmission). Compared to a random model, do cultural traits 155 

spread more rapidly or reach higher equilibrium prevalence under a prestige or consensus model?  156 

 157 

METHODS 158 

 159 

Simulation Model Structure 160 

We developed a simulation model using the computer package MATLAB (version 7, Natwick, 161 

Massachusetts) to simulate the spread of an introduced cultural trait in a socially structured population. 162 

The basic design of the model was developed as part of a previous investigation of the impact of host 163 

social group structure on the spread of an emerging infectious disease (Nunn et al. 2008). In that study, an 164 

initial infection was introduced into a population of susceptible hosts. Individuals that died from disease 165 

were not replaced (as is typical of wildlife epidemics), and group composition was allowed to depart from 166 

initial conditions as animals died or dispersed from groups. Here, we extend the model to study the spread 167 

of culturally inherited traits by including three different transmission mechanisms and adaptive value to 168 

the trait (i.e., positive or negative net benefits, representing a beneficial or costly trait, respectively). 169 

We were particularly interested in examining the spread of cultural traits in a spatial context, 170 

given that previous studies on infectious disease have shown that spatial structure can significantly impact 171 

disease dynamics and longer-term evolutionary processes (Thrall and Antonovics 1995; Gandon et al. 172 
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1996; Boots and Sasaki 1999; Roy and Kirchner 2000; Carlsson-Graner and Thrall 2002; O'Keefe and 173 

Antonovics 2002). For each simulation run, groups of individuals were formed based on user-specified 174 

values for group size. Groups were distributed on a 12 x 12 matrix (i.e., 144 groups on a square lattice) 175 

and formed as random draws from a Poisson distribution assuming an equal number of males and 176 

females. Deaths, births and dispersal of individuals will tend to cause the initial social conditions to drift 177 

over a simulation run, especially when simulations are run for many time steps. To deal with this issue, 178 

we retained a matrix of the initial numbers of males and females in each group. This “initiating matrix” 179 

was used to stochastically adjust probabilities associated with demographic parameters (birth and 180 

dispersal) to help maintain initial conditions for each group throughout a simulation run.  181 

The cultural trait was initiated in a single individual, and the trait was allowed to spread through 182 

the population in discrete time steps. In each time step, an individual remained in its original group or 183 

dispersed to other groups in the population, as determined by the probability of dispersal per time step. 184 

We assumed that dispersing individuals lacked contact with conspecifics. We further assumed that 185 

dominance rank of a migrant equaled the rank of that individual in the previous group and that this rank 186 

did not impact the probability of emigrating or immigrating. Individuals that dispersed were not allowed 187 

to enter groups from which they had most recently departed. The simulation was allowed to run until the 188 

cultural trait either went extinct in the population or the prevalence of the cultural trait stabilized at a non-189 

zero value. 190 

 191 

Mechanisms of Cultural Transmission 192 

Cultural traits spread by social learning within groups, and the probability of transmission (β) represents 193 

the per-contact probability of an observer acquiring a cultural trait from an individual that expresses the 194 

behavior. Mechanistically, β encapsulates the combined probability that one individual exhibits the trait 195 

while another naïve individual can view and potentially learn from the performer, including the time 196 

needed for the observer to learn techniques associated with performing the trait. Thus, lower values of β 197 



Nunn et al., p. 9 

could represent behaviors that are more complex (and thus more difficult to learn) or behaviors that are 198 

performed more rarely. Individuals that acquire the trait serve as performers in the next time step, and 199 

agents retain the trait throughout their lives in a simulation run. In our model, the selective benefits (or 200 

costs) of cultural traits are expressed by altering the background probability of death (see below).  201 

In the random model, contact rates and per-contact probabilities of transmission were equal 202 

among all individuals in a social group regardless of dominance rank and the proportion of individuals 203 

exhibiting the trait. Thus, contact rate increased with group size, analogous to predictions from standard 204 

mass-action epidemiological models (May and Anderson 1979; Anderson and May 1981). Thus, contacts 205 

within groups are assumed to have no spatial restrictions, in comparison to contacts between groups 206 

(where contact can only occur through dispersal). Analytically, the probability of a susceptible individual 207 

not acquiring the trait as a result of contacts with members of its group is equal to (1 – β)I, where I 208 

represents the number of individuals in a social group expressing the cultural trait. Thus, the overall 209 

probability that an individual learns the trait from one or more performers in a time step is given by 1 - (1 210 

– β)I.  211 

The prestige model calculates the individual probability that a trait spreads between individuals 212 

based on the rank of the performer, under the assumption that observers prefer to copy more dominant 213 

individuals within the population, including the possibility that animals possess simple heuristics in which 214 

subordinates emulate dominants as a way to learn successful foraging, competitive and hunting behaviors 215 

(Boyd and Richerson 1985; Boesch and Tomasello 1998; Henrich and McElreath 2003). At the time of 216 

group formation, individuals were assigned dominance ranks (di) using values from a uniform 217 

distribution. Use of a uniform distribution was preferred to the normal or other distributions because it 218 

captures the essence of dominance as a linear ranking, while also allowing some fine differences among 219 

individuals in rank. In the process of simulating the spread of cultural traits in the prestige model, user-220 

defined values of β were adjusted as follows for spread of a trait from performer i to observer j:  221 

 222 
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 β’ = β (0.01+ 1.98 ri
’ ) 223 

  224 

where ri
’ is the standardized rank of the performer, with standardization of ranks within each group 225 

ranging from 0 to 1 [ ri
’ = ( ri - rmin) / (rmax – rmin) ]. This procedure gives a range of values for β’ of 0.01 to 226 

1.99 times the user-specified β, with the midpoint centered on the user-specified value β. In this way, the 227 

individual with the lowest possible dominance rank (=0) had an adjusted β greater than zero (β’ = 0.01), 228 

thus preventing deterministic extinction of the trait if the first performer of the trait happened to be the 229 

lowest ranking individual in a group. When β > 0.5, the probability of transmission could exceed 1 for 230 

higher-ranking individuals. As our values of β were always less than 0.04 (Table 1), this should have no 231 

effect on model outcomes. Although a stronger version of the prestige model might not allow 232 

transmission from the lowest ranking performer to occur, it is worth noting that in our model, the 233 

probability of transmission for the lowest ranking individual is two orders of magnitude smaller than a 234 

middle-ranking individual; thus, rank has substantial effects on the probability of transmission. In one run 235 

of the simulation using the prestige model, we found that the normalized dominance rank of the performer 236 

was higher than the observer (t=37.7, n=427 transmission events, P<0.0001), with the average rank of the 237 

source 0.667 and the average of the recipient 0.495. For the other transmission models, both performer 238 

and observer had similar ranks (average of 0.50).  239 

 In the consensus model, transmission rates were adjusted based on the percentage of individuals 240 

in the group that expressed the trait, p. The adjusted β was calculated using a linear transformation: 241 

 242 

β’= β + (p – 0.5) β  243 

 244 

Thus, when less than 1/2 of the group members expressed the trait, β was adjusted downwards, and when 245 

the majority of individuals expressed the trait, β was adjusted upwards. It is important to stress that only 246 

the per-contact probability of transmission parameter (β) was adjusted, and this reflects the probability of 247 
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transmission between two individuals in the same group; the mass action effect of increasing numbers of 248 

‘culturally infected’ individuals represents an independent effect that tends to increase the spread of traits 249 

as more individuals in a group acquire the behavior. 250 

The consensus and prestige models were designed to be as simple as possible in their 251 

implementation and to have equal average probabilities of transmission, thus allowing comparison among 252 

the different transmission models. We acknowledge, however, that different mechanisms of maintaining a 253 

constant “average” transmission rate are possible and could produce dynamics that differ from those 254 

reported here. We consider this in more depth in the Discussion, along with alternative forms of biased 255 

transmission that could be investigated in the future. 256 

 257 

Maintaining Starting Conditions: Deaths, Births and Dispersal 258 

The causes of death were identified during a simulation run as being due to background mortality (m), 259 

such as predation and old age, or the presence of a costly cultural trait (as this increased mortality rates 260 

through a linear transformation of background mortality). An individual that died from natural causes was 261 

replaced by an individual of the same sex. Newly generated healthy individuals were placed in one of the 262 

existing groups with a probability that was adjusted according to how current group composition 263 

compared to the initiating matrix. If the number of individuals of the sex of the individual being replaced 264 

was less than the initiating values for that group, then the probability of assignment was increased. The 265 

new group was then determined based on a random draw from a list of all groups, with each group listed 266 

once and groups that were deficient given an additional entry. Thus, individuals could be added to any of 267 

the groups, but the addition was more likely if the group exhibited a deficit in the number of individuals 268 

of that sex, relative to the initiating matrix. As in our previous model (Nunn et al. 2008), we assumed that 269 

mortality rates are independent of age and that deaths attributed to a costly trait were not replaced by new 270 

individuals (as might be expected if populations are unable to respond demographically to these losses in 271 

the time horizons simulated here).  272 
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To investigate the effect of selective benefits (and costs) of a cultural trait, we assumed that 273 

selection on cultural traits acts by increasing or decreasing mortality. The mortality rate of individuals 274 

with the cultural trait was multiplied by a selection multiplier, sm, which was user-defined and ranged 275 

from 0.001 to 2 (Table 1). Thus, selective benefits produced a death rate that was as low as 1/1000 of the 276 

baseline mortality (sm = 0.001), and selective costs could increase baseline mortality by as much as 2 277 

times (sm = 2). In exploratory simulations, values of sm > 2 tended to result in rapid and consistent 278 

extinction of the trait. 279 

We also varied the rate of dispersal, which was measured as the per-day probability that an 280 

individual disperses from a group (Table 1). We assumed that dispersal was more likely for groups in 281 

which the number of individuals of a particular sex was above the initiating values for the number of 282 

individuals for that sex, thus using a procedure similar to that described above for mortality to maintain 283 

the initial population structure. Once dispersal was initiated, individuals were capable of entering a new 284 

group as soon as the next day. The dispersing individual moved in a random walk on the two-dimensional 285 

lattice of cells representing the different social groups. The lattice was bounded spatially and was not 286 

reflective; thus, a dispersing individual that hit a boundary did not move in that time step. When floaters 287 

entered a new group, they were capable of transmitting cultural traits as early as the next daily time step 288 

of the simulation.  289 

In summary, group composition was adjusted to maintain initial, user-specified values by 290 

preferentially adding individuals to groups with a deficiency in males or females through births and 291 

removing individuals from groups with an excess number of males or females through dispersal events.  292 

 293 

Sampling Parameter Space and Simulation Procedures 294 

To explore how different parameters influence cultural dynamics, we undertook multivariate analysis 295 

using random sampling. Random sampling was conducted using Latin hypercube sampling (Blower and 296 

Dowlatabadi 1994; Seaholm et al. 1988; Rushton et al. 2000), which is a type of stratified Monte Carlo 297 

sampling that has been used in epidemiological modeling and is more efficient in this context than 298 
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random sampling regimes or those that include all possible parameter values (Blower and Dowlatabadi 299 

1994; Seaholm et al. 1988). Seven parameters were varied in the Latin hypercube sample: transmission 300 

model, group size, transmission probability, background mortality, net benefit of the cultural trait, rate of 301 

dispersal, and a spatial versus non-spatial dispersal model. Table 1 gives ranges of parameter values. The 302 

discretely coded parameters (transmission model, spatial model) were represented as continuously 303 

varying traits in the Latin hypercube sample, which were then binned into equal numbers of the discrete 304 

traits. We assessed the sample size needed for the Latin hypercube sample by computing the theoretical 305 

variance and relative bias of parameter estimates for a range of possible sample sizes. To obtain rough 306 

approximations of the aforesaid variance and bias, we fit preliminary models from a few pilot simulation 307 

runs. From these computations, we determined that a sample size of 1500 would be sufficient to 308 

investigate the effects of parameter variation shown in Table 1. 309 

As noted above, each simulation run continued until the prevalence of the cultural trait reached 310 

equilibrium or prevalence fell to 0 (i.e., the cultural trait went extinct). For cases in which the trait 311 

persisted, equilibrium prevalence was determined empirically. Specifically, the simulation was stopped 312 

when six inter-related conditions were met. The cultural trait had (1) spread to all groups (even if 313 

subsequently going extinct in one or more groups). The correlation between time and prevalence was (2) 314 

non-significant at P>0.05 and (3) explained less than 1% of the variation over the previous window of 315 

200 time steps. Similarly, we examined the standard error of overall prevalence and required that it 316 

became (4) non-significant at P>0.05 and (5) explained less than 1% of the variation over the previous 317 

200 time steps. Finally, we required that (6) the median standard error of overall prevalence was less than 318 

the median for 200 time steps. We also examined variation in the time to equilibrium, defined as the first 319 

time step in which the estimated equilibrium value was reached, and we investigated factors that led to 320 

extinction of the trait. Figure 1 provides an example from one simulation run. The trait spread rapidly and 321 

reached an equilibrium prevalence of about 0.80 among individuals in the population after approximately 322 

500 time steps. From this, the equilibrium prevalence was calculated as 0.798 and the time to equilibrium 323 

following infection of all groups occurred on day 504. To satisfy the criteria for identifying equilibrium, 324 
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the actual simulation ran for an order of magnitude time longer than the time to equilibrium, with these 325 

criteria finally satisfied on day 5537. 326 

 327 

Analyses of Simulation Output 328 

We analyzed the output from the simulation using both generalized linear models (GLMs) and regression 329 

and classification trees (De'ath and Fabricius 2000; Roff and Roff 2003). We constructed three linear 330 

models to explain the simulation outcomes in terms of their parameters. First, all variables were scaled to 331 

the unit interval so that the magnitudes of their fitted effects could be compared on an absolute scale. To 332 

test for possible interaction effects among the simulation settings, we fit each model using two sets of 333 

explanatory variables: a reduced set incorporating only main effects and a full set including all possible 334 

interactions. The reduced set was comprised of the seven variables in Table 1 and the particular 335 

interaction of background mortality (m) and the cost multiplier of the trait (c), both of which were 336 

hypothesized to drive the response. The second set included these factors along with all 27 possible 337 

pairwise interactions. For each of the three outcomes, the full and reduced models were compared using 338 

the likelihood ratio test and Wald test (McCullagh and Nelder 1989) to assess the significance of the full 339 

set of pairwise interactions. All linear models were estimated using standard packages from the R 340 

statistical software. 341 

Regression and classification trees were calculated for the analysis of extinction probability and 342 

time to equilibrium using the Statistics Toolbox in MATLAB v. 7.0. We split impure nodes when the 343 

number of observations for that node was 100 for regression trees (time to equilibrium analysis) and 10 344 

for classification trees (extinction analysis). After creating an initial tree using the simulation output, we 345 

used 10-fold cross-validation to identify the pruning level with the minimal cost (De'ath and Fabricius 346 

2000), identified as the tree with the minimum error rate. Using this pruned tree, we calculated the 347 

percentage of variance explained by comparing predicted and observed values for the regression trees.  348 

 349 
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RESULTS 350 

 351 

General Patterns 352 

The simulation model produced a diversity of outcomes, with some traits quickly going extinct and others 353 

reaching an equilibrium in which the majority of individuals in the population expressed the trait. These 354 

variable outcomes reflected both stochastic effects and the effects of the parameters on the simulation 355 

dynamics. Among the 1500 simulations, the cultural trait persisted in 52.5% of the runs, as defined by the 356 

equilibrium conditions described in the Methods; in the remaining simulation runs, the cultural trait went 357 

extinct. Of the simulations resulting in trait persistence, the model ran for an average of 1513 time steps 358 

(range: 453 to 11,198 time steps). In cases of extinction, the model ran for an average of 842 time steps 359 

(range: 1 to 7,477 time steps). In cases of trait persistence, the average proportion of individuals 360 

expressing the trait was 0.931 (range: 0.19 to 1.0) and the time to reach this equilibrium “prevalence” was 361 

447 days (range: 18 to 8,893 days). In cases of extinction, the trait spread to an average of 81.2 groups 362 

prior to going extinct (range: 1 to 144). Thus, even traits that eventually went extinct often spread widely 363 

in the population. 364 

 The net benefit of the trait varied in the Latin hypercube sample (along with other parameters in 365 

Table 1). In general, traits with higher costs tended to more commonly go extinct, while higher benefits 366 

favored the establishment of a cultural trait (Figure 2). Remarkably, in 57.7% of simulations of costly 367 

traits, the trait managed to spread to all 144 groups in the population (although not all groups necessarily 368 

had the trait simultaneously). In 68% of these cases of pervasive spread, however, the costly trait 369 

subsequently went extinct. Thus, costly social traits spread widely in the simulation, but these traits 370 

typically fail to reach a stable equilibrium and eventually go extinct. The analyses below provide more 371 

insights into how costs impact trait establishment and spread.  372 

 373 

Probability of extinction 374 

We first investigated the factors that influence the probability of extinction. We fit a logistic regression 375 
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model for the full and reduced variable sets, treating extinction as the binary outcome for all 1,500 376 

simulations. Using the Wald test for the significance of the pairwise interaction effects in the full model, 377 

we found them to be non-significant (χ2
27 = 8.31; p = 0.99). Consequently, we settled on the reduced 378 

model (Table 2). The main drivers in this model are trait cost, background mortality, transmission 379 

probability and group size. We found that group size has a strongly negative effect on the probability of 380 

extinction, illustrated in the first panel of Figure 3. The effect of trait cost and background mortality on 381 

extinction was stronger (based on the parameter estimates) and is shown in the first panel of Figure 4. The 382 

probability of extinction increases with cost, and is further driven by an interaction effect with 383 

background mortality. Transmission probability (β) had a negative coefficient, indicating that increases in 384 

β reduced the risk of trait extinction. We also found that higher rates of dispersal reduced the probability 385 

of extinction, although this effect only approached significance (p=0.07). In contrast to these factors, the 386 

coefficients associated with the transmission model and spatial models were negligibly small and not 387 

significant, indicating that the results were similar across all transmission models and were minimally 388 

impacted by either local dispersal or transmission biases. 389 

 To visualize the effects of the parameters on the probability of extinction, we also ran a 390 

classification tree analysis. The resulting tree (Figure 5) revealed that traits were more likely to go extinct 391 

at higher costs and higher mortality. The tree also predicts that for beneficial traits, a higher transmission 392 

probability (β) reduces the probability of extinction. The classification tree analysis confirmed the 393 

interaction between costliness of the trait and mortality in the generalized linear model (Table 2), but 394 

failed to detect an effect of group size. The tree also provided no evidence for effects of local dispersal or 395 

transmission model.   396 

 397 

Equilibrium Prevalence 398 

The second set of analyses involved the factors that influenced the proportion of individuals that exhibited 399 

the cultural trait at equilibrium (i.e., equilibrium prevalence). For the 787 simulations in which the trait 400 
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did not go extinct, we fit a binomial GLM for prevalence, modeling the mean proportion of individuals 401 

who have the trait at the end of the simulation. We again tested for interaction effects additional to 402 

mortality x cost using the likelihood ratio test and found none to be significant (χ2
27 = 26.07; p = 0.49), 403 

leading us to accept the reduced model. The resulting regression estimates are shown in Table 3. 404 

As expected, most of the coefficients for the extinction model were reversed in sign for the model 405 

describing equilibrium prevalence (i.e., factors that increase prevalence should decrease the probability of 406 

extinction). The relative magnitudes of the parameters varied. In the binomial GLM for prevalence, the 407 

transmission probability (β) had a major impact on prevalence of the cultural trait, with greater values of 408 

β increasing equilibrium prevalence. Group size (Figure 3), background mortality and trait cost all 409 

negatively impacted prevalence, with a strong interaction between mortality and cost (Figure 4). The 410 

results were again similar across most transmission and spatial models, although we found a nearly 411 

significant effect indicating that consensus transmission results in higher prevalence (as compared to the 412 

random model). 413 

 414 

Time to Equilibrium 415 

We analyzed the factors that influence the speed with which the trait spreads in the population by again 416 

focusing on the 787 simulations in which the traits reached an equilibrium. Since the equilibrium times 417 

were highly right-skewed, we fit a log-linear model of time to equilibrium. In this case, the full model, 418 

with main effects and all pairwise interactions, yielded a significantly better fit than the reduced model, 419 

leading the likelihood ratio test to reject the reduced model (χ2
27 = 49.31; p = 0.005). Table 4 shows the 420 

most significant effects and interactions from the full model, which explained 75% of the variation in log-421 

transformed time to equilibrium. 422 

 The major drivers of time to equilibrium were group size, dispersal rate, cost of the trait and 423 

transmission probability. Time to equilibrium decreased with larger group sizes (Figure 3) and greater 424 

dispersal rates (Figure 6). A strong negative coefficient indicated that greater transmission probabilities 425 
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(β) also increase the rate at which a cultural trait penetrates a population (Figure 6). Among this set of 426 

simulations that resulted in equilibrium, higher costs were associated with more rapid establishment of 427 

equilibrium prevalence. The analysis also revealed several significant interaction effects. The 428 

combination of greater transmission probability and greater cost and background mortality increased time 429 

to equilibrium substantially. While the results were similar across transmission models, time to 430 

equilibrium was generally much greater in the spatial model than the non-spatial model, as reflected in 431 

both panels of Figure 6. 432 

 We also ran a regression tree analysis to illustrate the effects of the parameters in Table 1 on the 433 

time to equilibrium, which was log-transformed for this analysis (Figure 7). The resulting tree explained 434 

64% of the variation in the time required for a cultural trait to reach equilibrium. Dispersal rate was found 435 

at the highest node, as well as in lower parts of the regression tree; in all cases, higher rates of dispersal 436 

reduced the time required for a trait to reach equilibrium. Subsequent effects were different at low and 437 

high rates of dispersal. When the probability of dispersal was less than 0.0047, group size played a major 438 

role in influencing the time required for a trait to reach equilibrium; with group sizes less than 20.3, the 439 

time to equilibrium was predicted to be nearly one order of magnitude higher (based on the log-440 

transformed durations given on the tips of the tree). By contrast, at higher rates of dispersal, a non-spatial 441 

model resulted in a marked increase in the rate of trait spread at the population level (predicted values of 442 

2.50 for local dispersal, versus 2.13 for random dispersal to any group). As expected, a higher 443 

transmission probability increased the rate of trait spread. However, prestige and consensus transmission 444 

again had no effects on cultural trait dynamics at the population level. 445 

 446 

DISCUSSION 447 

 448 

In animal societies, most social learning occurs among individuals within groups, and the same was likely 449 

to be true of prehistoric human populations. In socially structured populations, establishment of a cultural 450 
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trait at the population level requires that the trait spread beyond a single social group, yet with few 451 

exceptions (e.g., Henrich and Boyd 1998; Boyd and Richerson 2002), most work on cultural transmission 452 

has focused on within-group dynamics. We investigated a set of transmission mechanisms, including 453 

biases due to prestige or consensus transmission, and social system parameters to determine which factors 454 

influence cultural dynamics in socially structured populations. Among the transmission parameters, the 455 

transmission probability (β) affected trait persistence and equilibrium levels of trait prevalence, with 456 

higher transmission probability resulting in higher prevalence (and also more rapid spread of the trait). 457 

Among the social system parameters, increased group size favored the establishment of the trait and 458 

enhanced its spread, while increased mortality and trait costs increased the probability of trait extinction 459 

and reduced equilibrium prevalence. Remarkably, we found that transmission biases involving prestige or 460 

consensus effects had no significant effects on trait dynamics at the population level (although consensus 461 

transmission showed evidence for some weak effects on equilibrium prevalence). Another interesting 462 

result was that local dispersal slowed the rate of trait spread in the population, but had no significant 463 

effects on the probability of extinction or prevalence. 464 

One conclusion from these analyses is that the effects of biased transmission involving consensus 465 

and prestige effects were minor relative to other factors. Biased transmission may have minor effects 466 

because cultural traits can spread rapidly within groups, and the mass-action effect of increasing the 467 

number of animals acting as performers may outweigh any minor adjustments in transmission probability 468 

caused by prestige or consensus mechanisms. We designed the simulation so that the mean rate of 469 

transmission would be approximately equal across the three transmission models that we used. We 470 

suggest that effects of biased transmission, if they exist, are weaker than other effects, such as the 471 

costliness of the cultural trait.  472 

We acknowledge, however, that different implementation of the consensus and prestige models 473 

could alter this conclusion. Instead of our simple model of “linear majority rules” for the consensus 474 

model, for example, the probability of transmission could have a different shape, including possibly a 475 
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more rapid rise at lower prevalence, which could alter the dynamics to speed up trait spread and reduce 476 

extinction risk. Similarly, we assumed that the effect of dominance was linear, and that only the rank of 477 

the performer was relevant (rather than the difference in the ranks of observer and performer). If we 478 

assumed instead that dominants were also more likely to acquire beneficial traits – i.e., that a link exists 479 

between dominance rank and the acquisition of beneficial traits – this could impact cultural trait dynamics 480 

(e.g., Boyd and Richerson 1985; Boesch and Tomasello 1998; Henrich and Gil-White 2001; Henrich and 481 

McElreath 2003). Similarly, we might expect that migration is more likely by lower-ranking individuals. 482 

In such a case, the rate of trait spread could slow, as lower-ranking individuals moving into a new group 483 

would be less likely to be copied. Thus, our model provides a foundation for exploring the conditions 484 

under which prestige and consensus mechanisms have an impact on par with the effect of social system 485 

parameters. 486 

An almost limitless set of cultural transmission mechanisms is possible (e.g., Laland 2004), and 487 

thus we were forced to select a small subset of key factors that might bias transmission (Boesch and 488 

Tomasello 1998; Henrich and McElreath 2003). We further aimed to implement these transmission 489 

models as simply as possible, for example by using linear transformations of the probability of 490 

transmission based on dominance rank of culturally-skilled individuals (prestige model) or the percentage 491 

of animals in the group that expressed the trait (consensus model). Future research could consider variants 492 

on these models, and also constraints. For example, there could be greater opportunities for transmitting 493 

traits within the sexes than between them (e.g., clothing fashions). Similarly, social groups themselves are 494 

often composed of networks of interactions involving kin, alliances and sexual partners, and some traits 495 

might be transmitted vertically from mother to offspring. Age effects might also be important, with 496 

transmission to an observer more likely during age-specific periods when learning is more likely, or the 497 

behaviors themselves only expressed at a particular life stage; such effects would be expected to slow the 498 

spread of the cultural trait. It would also be interesting to investigate competition among traits that have 499 

different transmission mechanisms or benefits to individuals with the traits. Finally, it is worth keeping in 500 
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mind that the prestige and consensus models are not mutually exclusive. Although we treated them 501 

separately here, it might be interesting to investigate their combined effects on cultural trait dynamics. 502 

The social factors that we investigated have clear analogies to the spread of infectious disease in 503 

socially structured populations, particularly for costly cultural traits that can negatively impact fitness. 504 

Returning to the case of individuals copying dominants, for example, similar patterns can be found with 505 

sexually transmitted diseases (STDs). In epidemiological models of STDs in animals, more dominant 506 

individuals are more likely to be infected, and thus more likely to spread the disease (Thrall et al. 2000; 507 

Kokko et al. 2002). Similarly, disease spread can be impacted by group size, patterns of dispersal, and 508 

mortality rates (Anderson and May 1991; Wilson et al. 2003; Nunn and Altizer 2006).  509 

However, important differences exist between the spread of cultural traits and infectious disease, 510 

particularly with regard to the selective benefits of many cultural traits (in comparison to costs usually 511 

associated with disease). As compared to disease transmission, for example, cultural evolution in socially 512 

structured populations is likely to set up a group selection scenario, in which advantageous cultural traits 513 

could lead to larger groups and higher rates of dispersal (Wilson 1983; Soltis et al. 1995). In addition, 514 

cultural traits in animals and early humans tend to spread directly between individuals in close proximity, 515 

while infectious diseases can be transmitted indirectly (e.g., through vectors or contaminated soil). Lastly, 516 

innovation is possible in cultural systems, even if it is often “primed” by previous innovations or cultural 517 

structures, whereas infectious diseases do not typically arise de novo in a population (although they could 518 

appear to do so when spillover from a reservoir host occurs, or when hybridization among pathogens 519 

opens up new hosts to exploit). In other words, you do not actually have to have direct contact with an 520 

“infected” individual to get a good idea; individual learning can also play a role, and is ultimately 521 

responsible for the origin of cultural behaviors. 522 

A beneficial cultural trait is expected to spread rapidly and reach high prevalence, and our 523 

simulations confirmed this expectation under a wide range of conditions. Advantageous behaviors are 524 

also likely to reduce the likelihood of group extinction, which could create opportunities for group 525 

selection in natural situations. On the other hand, one can easily think of cultural traits that are clearly not 526 
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advantageous for survival, yet spread throughout populations. These are superficially similar to 527 

establishment of infectious diseases, which entail a cost to the host but still can reach a stable equilibrium. 528 

Our simulations suggest that costly cultural traits can spread widely, but as costs increase the probability 529 

of extinction also increases.  530 

 The results of our analysis suggest that the explosion of cultural behaviors and variants in human 531 

evolution should have resulted when group size, contact between groups and the benefits of cultural traits 532 

increased. Many cultural traits in humans are technological. Hence, these traits would be likely to carry a 533 

very strong benefit, favoring their establishment in both species. Second, the higher technological skills 534 

seen in human evolution, with the inclusion of many stone tools, could reasonably have led to a reduction 535 

in mortality rates. This would have favored the further development of larger social groups, which as we 536 

saw in our analysis, favor the establishment of cultural traits. Lastly, in comparison to other apes, humans 537 

live in more dispersed social groups, in much larger home ranges, and with regular contact including 538 

more than only direct neighbors; these social groups likely had more contact with other groups as trade 539 

took place. Our results suggest that these contacts would have increased the rate at which cultural traits 540 

spread, and might have reduced the probability that they went extinct. 541 

To conclude, it is useful to return to the four questions that we posed in the Introduction. The 542 

simulations revealed that local dispersal increases the time required for a trait to reach equilibrium 543 

(Question 1), and that cultural traits are buffered from extinction in larger groups (Question 2). We also 544 

found that higher rates of dispersal increase the rate of trait spread in the population, with weaker effects 545 

(approaching significance) on the probability of extinction. In terms of mortality, we found that mortality 546 

rates have an impact on cultural dynamics, including through effects of the cultural trait on mortality itself 547 

(Question 3). Thus, higher costs of the trait and higher background mortality increase extinction 548 

probability and reduce the prevalence of the trait. Lastly, we found that the rate of transmission impacts 549 

all of the outcome variables that we examined, but that transmission mechanisms involving prestige or 550 

consensus had no statistically discernible effects on trait dynamics (Question 4). As noted above, this 551 

conclusion could be sensitive to how prestige and consensus transmission were implemented, and 552 
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therefore should be explored further in future research. Along similar lines, it would be interesting to 553 

explore other transmission mechanisms that might influence the spread of traits among contact networks 554 

within groups, including vertical transmission, sex- and age-specific transmission, and patterns of kinship.  555 

556 
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Figure Legends 661 

 662 

Figure 1. Detecting equilibrium. Plot shows output from one simulation run using default parameters. 663 

The text provides details on equilibrium prevalence and time step at which this was first reached, as 664 

calculated by the simulation program.  665 

 666 

Figure 2. Trait persistence in relation to net benefits of the cultural trait. Bars indicate number of 667 

cases in which the trait reached an equilibrium, as compared to the alternative of going extinct. Increasing 668 

benefits are shown to the left of the central line, while increasing costs are shown to the right. Results are 669 

based on the output from 1500 simulations. As the Latin hypercube sample provided a flat distribution for 670 

the values, including costs of the trait shown along the x-axis, this plot reveals that higher costs are 671 

associated with higher extinction, but that some costly traits nonetheless reach an equilibrium. 672 

 673 

Figure 3. Modeled extinction, prevalence and time to equilibrium by size. The three panels show the 674 

modeled extinction rate, prevalence and time to equilibrium by scaled group size. The rates correspond to 675 

default values of the other settings. 676 

 677 

Figure 4. Modeled extinction and prevalence by background mortality and trait cost. The two panels 678 

show the modeled extinction and prevalence rates across a range of cost levels at two different 679 

background mortality rates (scaled on the interval 0 to 1). The other settings are at default values. 680 

 681 

Figure 5. Classification tree for extinction. Extinction is indicated as a dichotomous trait on the tips of 682 

the tree, where “survive” indicates that the trait is predicted to reach an equilibrium rather than go extinct.  683 

 684 

Figure 6. Modeled time to equilibrium by dispersal rate. The plots show the effects of dispersal rate, 685 

transmission probability and spatial model on time to equilibrium. The other settings are at default values. 686 
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 687 

Figure 7. Regression tree for time to equilibrium. Time to equilibrium is log-transformed, with 688 

predicted values shown at the tips of the tree. 689 

690 
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Table 1. Parameter values investigated in the simulation.  690 

Symbol Definition Range of Values 

 g  average number of females in groups, gm 4 to 40 

 d  baseline probability of dispersal per day 0.0001 to 0.02 

 β  per-contact transmission probability 0.0001 to 0.04 

 m  baseline mortality rate per day 0.0001 to 0.04 

 c  benefit or cost of cultural trait (multiplier for m) 0.001 to 2 

 S  spatial vs. non-spatial model (categorical) 0,1 

 T  transmission model (categorical, corresponding to 

random, consensus and prestige transmission) 

0,1,2 

 691 

692 
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Table 2. Parameter estimates in the logistic regression model for extinction probability. 692 

Parameter Estimate Std. Error p-value 

Intercept -3.35 0.68 <0.001 

 g 
-1.42 0.38 <0.001 

 d 
-0.67 0.37 0.070 

 β -1.81 0.39 <0.001 

m 0.04 1.03 0.971 

c 6.01 0.92 <0.001 

T (consensus vs. random) 0.37 0.26 0.153 

T (prestige vs. random) 0.36 0.27 0.178 

S (spatial vs. non-spatial) 0.16 0.21 0.453 

m * c 7.93 1.92 <0.001 

 693 

694 
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Table 3. Parameter estimates in the binomial GLM model for trait prevalence. 694 

Parameter Estimate Std. Error p-value 

Intercept 2.43 0.18 <0.001 

 g 
1.84 0.12 <0.001 

 d 
0.12 0.11 0.293 

β 2.91 0.13 <0.001 

m -0.79 0.24 0.001 

c -1.95 0.31 <0.001 

T (consensus vs. random) 0.14 0.08 0.065 

T (prestige vs. random) -0.09 0.08 0.214 

S (spatial vs. non-spatial) 0.04 0.06 0.455 

m * c -4.89 0.58 <0.001 

 695 

696 



Nunn et al., p. 34 

Table 4. Significant parameter estimates in the log-linear model for time to equilibrium. 696 

Parameter Estimate Std. Error p-value 

Intercept 7.52 0.22 <0.001 

 g 
-1.68 0.26 <0.001 

 d 
-1.21 0.25 <0.001 

 β -1.56 0.27 <0.001 

 c -1.23 0.33 <0.001 

S (spatial vs. non-spatial) 0.82 0.15 <0.001 

d * β -0.47 0.23 0.042 

β * m 0.69 0.23 0.003 

β * c 1.38 0.33 <0.001 

(27 others)    

 697 
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