6 research outputs found

    Analysis and modeling of the effect of tides on the hydrostatic leveling system at CERN

    No full text
    International audienceTo meet alignment tolerances that are becoming tighter and tighter (ÂĄ10 mm for the Compact Linear Collider (CLIC) project), the surveyors in the Survey Section at European Organization for Nuclear Research (CERN) must master the tilt effects exerted on their hydrostatic levelling system (HLS) networks. These effects are many and have varied consequences, although the majority of them tilt the ground and also the water surface present inside HLS (HLS sensors in a homogeneous way. In order to model all inclinations together as a block, we have adjusted, at each time t, the line through the seven sensors in the Transfer Tunnel 1 (TT1) experiment. After removal of this signal, the residual amplitudes of the readings are less than the HLS alignment tolerances of the proposed CLIC main accelerator CLIC. In addition, the residual signals have lost their semidiurnal and diurnal periodic components, proving that any local effects in the TT1 facility cannot be detected with the accuracy of our systems. Further progress has to be made however, to master the effect of temperature on the HLS. The periods remaining in the residual HLS signal proves the presence of uncorrected thermal effects

    Analyse et modélisation de l'effet des marées sur les réseaux de nivellement hydrostatiques du CERN

    No full text
    The surveyors of the Large Scale Metrology section of the European Organization for Nuclear Research (CERN) use hydrostatic levelling systems (HLS) to perform precise vertical alignment measurements. The HLS achieves micrometer accuracy, which allows it to be used for the fundamental physics experiments such as the Large Hadron Collider (LHC). An HLS measures the deformations that lead to the misalignment of any particle accelerator linked to the ground, but it also measures other phenomena with very particular characteristics. Among these measured phenomena Earth tides form the main part of the signal. Their effect on HLS measurements is periodic and produces a long baseline tilt that does not lead to a relative misalignment of the magnets that constitute the accelerator.The objectives of this doctoral research are to be able to predict the effects which do not disturb the relative alignment of a particle accelerator and to remove these signals from the HLS measurements. Indeed, the horizontal and vertical positioning tolerances to be respected in the realm of particle accelerators are becoming tighter and tighter. For example, the Compact Linear Collider (CLIC), currently the object of a feasibility study, requires a 3σ alignment accuracy of 10 ÎŒm in a sliding window of 200 m, in both the transverse and vertical directions. The HLS is a candidate for measuring the vertical alignment but the amplitude of the tidal effect is approximately +/-20 ÎŒm over200 m, making it necessary to take into account this long baseline phenomenon for the instrument to meet the CLIC requirements.This doctoral thesis is inspired by previous work on the long baseline tiltmeters and describes the effects measured by HLS in order to classify the measured phenomena according to whether they could produce a misalignment of a particle accelerator or not. Finally, the tools and models to predict those effects that are well understood are used to anticipate the different signals measured by HLS installed at CERN.Les gĂ©omĂštres de la section Survey de l’Organisation EuropĂ©enne pour la Recherche NuclĂ©aire (CERN) utilisent le nivellement hydrostatique HLS pour effectuer des alignements verticaux prĂ©cis. Le HLS atteint des prĂ©cisions micromĂ©triques, ce qui lui permet d’ĂȘtre utilisĂ© pour les expĂ©riences Ă  but de physique fondamentale comme le Large Hadron Collider (LHC). HLS mesure certes des dĂ©formations qui ont pour consĂ©quence de dĂ©saligner tout accĂ©lĂ©rateur de particules liĂ© au sol, mais il mesure Ă©galement d’autres phĂ©nomĂšnes aux caractĂ©ristiques bien particuliĂšres. Parmi ces phĂ©nomĂšnes mesurĂ©s, les marĂ©es terrestres reprĂ©sentent une part trĂšs largement majoritaire du signal. Leur effet sur les mesures HLS est pĂ©riodique et engendre une inclinaison longue base qui n’aboutit pas au dĂ©salignement relatif des aimants constitutifs d’un accĂ©lĂ©rateur. Les objectifs de ce doctorat sont de pouvoir prĂ©dire les effets ne perturbant pas l’alignement relatif d’un accĂ©lĂ©rateur de particules et ainsi corriger les mesures HLS de ces signaux. En effet, les tolĂ©rances planimĂ©trique et altimĂ©trique Ă  respecter dans le domaine des accĂ©lĂ©rateurs de particules sont de plus en plus serrĂ©es. Par exemple, le Compact Linear Collider (CLIC), aujourd’hui Ă  l’étude de faisabilitĂ©, nĂ©cessite une prĂ©cision d’alignement Ă  3σ de 10 ÎŒm dans une fenĂȘtre glissante de 200 m selon les directions transversale et verticale. Le HLS est candidat pour assurer cet alignement vertical mais l’amplitude de marĂ©e est d’environ +/-20 ÎŒm Ă  200 m, rendant nĂ©cessaire la prise en compte de ce phĂ©nomĂšne longue base pour que l’instrumentation rĂ©ponde aux besoins du CLIC. Ce doctorat est inspirĂ© des travaux dĂ©jĂ  rĂ©alisĂ©s sur les inclinomĂštres longue base et dĂ©crit les effets mesurĂ©s par HLS afin de classer ces phĂ©nomĂšnes selon qu’ils dĂ©salignent ou non un accĂ©lĂ©rateur de particules. Enfin, les outils et modĂšles pour prĂ©dire les effets maitrisables sont utilisĂ©s pour anticiper les diffĂ©rents signaux mesurĂ©s par les HLS installĂ©s au CERN

    Analysis and filtering of the effect of tides on the hydrostatic levelling systems at CERN

    No full text
    Les gĂ©omĂštres de la section Survey de l’Organisation EuropĂ©enne pour la Recherche NuclĂ©aire (CERN) utilisent le nivellement hydrostatique HLS pour effectuer des alignements verticaux prĂ©cis. Le HLS atteint des prĂ©cisions micromĂ©triques, ce qui lui permet d’ĂȘtre utilisĂ© pour les expĂ©riences Ă  but de physique fondamentale comme le Large Hadron Collider (LHC). HLS mesure certes des dĂ©formations qui ont pour consĂ©quence de dĂ©saligner tout accĂ©lĂ©rateur de particules liĂ© au sol, mais il mesure Ă©galement d’autres phĂ©nomĂšnes aux caractĂ©ristiques bien particuliĂšres. Parmi ces phĂ©nomĂšnes mesurĂ©s, les marĂ©es terrestres reprĂ©sentent une part trĂšs largement majoritaire du signal. Leur effet sur les mesures HLS est pĂ©riodique et engendre une inclinaison longue base qui n’aboutit pas au dĂ©salignement relatif des aimants constitutifs d’un accĂ©lĂ©rateur. Les objectifs de ce doctorat sont de pouvoir prĂ©dire les effets ne perturbant pas l’alignement relatif d’un accĂ©lĂ©rateur de particules et ainsi corriger les mesures HLS de ces signaux. En effet, les tolĂ©rances planimĂ©trique et altimĂ©trique Ă  respecter dans le domaine des accĂ©lĂ©rateurs de particules sont de plus en plus serrĂ©es. Par exemple, le Compact Linear Collider (CLIC), aujourd’hui Ă  l’étude de faisabilitĂ©, nĂ©cessite une prĂ©cision d’alignement Ă  3σ de 10 ÎŒm dans une fenĂȘtre glissante de 200 m selon les directions transversale et verticale. Le HLS est candidat pour assurer cet alignement vertical mais l’amplitude de marĂ©e est d’environ +/-20 ÎŒm Ă  200 m, rendant nĂ©cessaire la prise en compte de ce phĂ©nomĂšne longue base pour que l’instrumentation rĂ©ponde aux besoins du CLIC. Ce doctorat est inspirĂ© des travaux dĂ©jĂ  rĂ©alisĂ©s sur les inclinomĂštres longue base et dĂ©crit les effets mesurĂ©s par HLS afin de classer ces phĂ©nomĂšnes selon qu’ils dĂ©salignent ou non un accĂ©lĂ©rateur de particules. Enfin, les outils et modĂšles pour prĂ©dire les effets maitrisables sont utilisĂ©s pour anticiper les diffĂ©rents signaux mesurĂ©s par les HLS installĂ©s au CERN.The surveyors of the Large Scale Metrology section of the European Organization for Nuclear Research (CERN) use hydrostatic levelling systems (HLS) to perform precise vertical alignment measurements. The HLS achieves micrometer accuracy, which allows it to be used for the fundamental physics experiments such as the Large Hadron Collider (LHC). An HLS measures the deformations that lead to the misalignment of any particle accelerator linked to the ground, but it also measures other phenomena with very particular characteristics. Among these measured phenomena Earth tides form the main part of the signal. Their effect on HLS measurements is periodic and produces a long baseline tilt that does not lead to a relative misalignment of the magnets that constitute the accelerator.The objectives of this doctoral research are to be able to predict the effects which do not disturb the relative alignment of a particle accelerator and to remove these signals from the HLS measurements. Indeed, the horizontal and vertical positioning tolerances to be respected in the realm of particle accelerators are becoming tighter and tighter. For example, the Compact Linear Collider (CLIC), currently the object of a feasibility study, requires a 3σ alignment accuracy of 10 ÎŒm in a sliding window of 200 m, in both the transverse and vertical directions. The HLS is a candidate for measuring the vertical alignment but the amplitude of the tidal effect is approximately +/-20 ÎŒm over200 m, making it necessary to take into account this long baseline phenomenon for the instrument to meet the CLIC requirements.This doctoral thesis is inspired by previous work on the long baseline tiltmeters and describes the effects measured by HLS in order to classify the measured phenomena according to whether they could produce a misalignment of a particle accelerator or not. Finally, the tools and models to predict those effects that are well understood are used to anticipate the different signals measured by HLS installed at CERN

    Analysis and filtering of the effect of tides on the hydrostatic levelling systems at CERN

    No full text
    Les gĂ©omĂštres de la section Survey de l’Organisation EuropĂ©enne pour la Recherche NuclĂ©aire (CERN) utilisent le nivellement hydrostatique HLS pour effectuer des alignements verticaux prĂ©cis. Le HLS atteint des prĂ©cisions micromĂ©triques, ce qui lui permet d’ĂȘtre utilisĂ© pour les expĂ©riences Ă  but de physique fondamentale comme le Large Hadron Collider (LHC). HLS mesure certes des dĂ©formations qui ont pour consĂ©quence de dĂ©saligner tout accĂ©lĂ©rateur de particules liĂ© au sol, mais il mesure Ă©galement d’autres phĂ©nomĂšnes aux caractĂ©ristiques bien particuliĂšres. Parmi ces phĂ©nomĂšnes mesurĂ©s, les marĂ©es terrestres reprĂ©sentent une part trĂšs largement majoritaire du signal. Leur effet sur les mesures HLS est pĂ©riodique et engendre une inclinaison longue base qui n’aboutit pas au dĂ©salignement relatif des aimants constitutifs d’un accĂ©lĂ©rateur. Les objectifs de ce doctorat sont de pouvoir prĂ©dire les effets ne perturbant pas l’alignement relatif d’un accĂ©lĂ©rateur de particules et ainsi corriger les mesures HLS de ces signaux. En effet, les tolĂ©rances planimĂ©trique et altimĂ©trique Ă  respecter dans le domaine des accĂ©lĂ©rateurs de particules sont de plus en plus serrĂ©es. Par exemple, le Compact Linear Collider (CLIC), aujourd’hui Ă  l’étude de faisabilitĂ©, nĂ©cessite une prĂ©cision d’alignement Ă  3σ de 10 ÎŒm dans une fenĂȘtre glissante de 200 m selon les directions transversale et verticale. Le HLS est candidat pour assurer cet alignement vertical mais l’amplitude de marĂ©e est d’environ +/-20 ÎŒm Ă  200 m, rendant nĂ©cessaire la prise en compte de ce phĂ©nomĂšne longue base pour que l’instrumentation rĂ©ponde aux besoins du CLIC. Ce doctorat est inspirĂ© des travaux dĂ©jĂ  rĂ©alisĂ©s sur les inclinomĂštres longue base et dĂ©crit les effets mesurĂ©s par HLS afin de classer ces phĂ©nomĂšnes selon qu’ils dĂ©salignent ou non un accĂ©lĂ©rateur de particules. Enfin, les outils et modĂšles pour prĂ©dire les effets maitrisables sont utilisĂ©s pour anticiper les diffĂ©rents signaux mesurĂ©s par les HLS installĂ©s au CERN.The surveyors of the Large Scale Metrology section of the European Organization for Nuclear Research (CERN) use hydrostatic levelling systems (HLS) to perform precise vertical alignment measurements. The HLS achieves micrometer accuracy, which allows it to be used for the fundamental physics experiments such as the Large Hadron Collider (LHC). An HLS measures the deformations that lead to the misalignment of any particle accelerator linked to the ground, but it also measures other phenomena with very particular characteristics. Among these measured phenomena Earth tides form the main part of the signal. Their effect on HLS measurements is periodic and produces a long baseline tilt that does not lead to a relative misalignment of the magnets that constitute the accelerator.The objectives of this doctoral research are to be able to predict the effects which do not disturb the relative alignment of a particle accelerator and to remove these signals from the HLS measurements. Indeed, the horizontal and vertical positioning tolerances to be respected in the realm of particle accelerators are becoming tighter and tighter. For example, the Compact Linear Collider (CLIC), currently the object of a feasibility study, requires a 3σ alignment accuracy of 10 ÎŒm in a sliding window of 200 m, in both the transverse and vertical directions. The HLS is a candidate for measuring the vertical alignment but the amplitude of the tidal effect is approximately +/-20 ÎŒm over200 m, making it necessary to take into account this long baseline phenomenon for the instrument to meet the CLIC requirements.This doctoral thesis is inspired by previous work on the long baseline tiltmeters and describes the effects measured by HLS in order to classify the measured phenomena according to whether they could produce a misalignment of a particle accelerator or not. Finally, the tools and models to predict those effects that are well understood are used to anticipate the different signals measured by HLS installed at CERN

    Analyse et modélisation de l'effet des marées sur les réseaux de nivellement hydrostatiques du CERN

    No full text
    Les gĂ©omĂštres de la section Survey de l Organisation EuropĂ©enne pour la Recherche NuclĂ©aire (CERN) utilisent le nivellement hydrostatique HLS pour effectuer des alignements verticaux prĂ©cis. Le HLS atteint des prĂ©cisions micromĂ©triques, ce qui lui permet d ĂȘtre utilisĂ© pour les expĂ©riences Ă  but de physique fondamentale comme le Large Hadron Collider (LHC). HLS mesure certes des dĂ©formations qui ont pour consĂ©quence de dĂ©saligner tout accĂ©lĂ©rateur de particules liĂ© au sol, mais il mesure Ă©galement d autres phĂ©nomĂšnes aux caractĂ©ristiques bien particuliĂšres. Parmi ces phĂ©nomĂšnes mesurĂ©s, les marĂ©es terrestres reprĂ©sentent une part trĂšs largement majoritaire du signal. Leur effet sur les mesures HLS est pĂ©riodique et engendre une inclinaison longue base qui n aboutit pas au dĂ©salignement relatif des aimants constitutifs d un accĂ©lĂ©rateur. Les objectifs de ce doctorat sont de pouvoir prĂ©dire les effets ne perturbant pas l alignement relatif d un accĂ©lĂ©rateur de particules et ainsi corriger les mesures HLS de ces signaux. En effet, les tolĂ©rances planimĂ©trique et altimĂ©trique Ă  respecter dans le domaine des accĂ©lĂ©rateurs de particules sont de plus en plus serrĂ©es. Par exemple, le Compact Linear Collider (CLIC), aujourd hui Ă  l Ă©tude de faisabilitĂ©, nĂ©cessite une prĂ©cision d alignement Ă  3 de 10 m dans une fenĂȘtre glissante de 200 m selon les directions transversale et verticale. Le HLS est candidat pour assurer cet alignement vertical mais l amplitude de marĂ©e est d environ +/-20 m Ă  200 m, rendant nĂ©cessaire la prise en compte de ce phĂ©nomĂšne longue base pour que l instrumentation rĂ©ponde aux besoins du CLIC. Ce doctorat est inspirĂ© des travaux dĂ©jĂ  rĂ©alisĂ©s sur les inclinomĂštres longue base et dĂ©crit les effets mesurĂ©s par HLS afin de classer ces phĂ©nomĂšnes selon qu ils dĂ©salignent ou non un accĂ©lĂ©rateur de particules. Enfin, les outils et modĂšles pour prĂ©dire les effets maitrisables sont utilisĂ©s pour anticiper les diffĂ©rents signaux mesurĂ©s par les HLS installĂ©s au CERN.The surveyors of the Large Scale Metrology section of the European Organization for Nuclear Research (CERN) use hydrostatic levelling systems (HLS) to perform precise vertical alignment measurements. The HLS achieves micrometer accuracy, which allows it to be used for the fundamental physics experiments such as the Large Hadron Collider (LHC). An HLS measures the deformations that lead to the misalignment of any particle accelerator linked to the ground, but it also measures other phenomena with very particular characteristics. Among these measured phenomena Earth tides form the main part of the signal. Their effect on HLS measurements is periodic and produces a long baseline tilt that does not lead to a relative misalignment of the magnets that constitute the accelerator.The objectives of this doctoral research are to be able to predict the effects which do not disturb the relative alignment of a particle accelerator and to remove these signals from the HLS measurements. Indeed, the horizontal and vertical positioning tolerances to be respected in the realm of particle accelerators are becoming tighter and tighter. For example, the Compact Linear Collider (CLIC), currently the object of a feasibility study, requires a 3 alignment accuracy of 10 m in a sliding window of 200 m, in both the transverse and vertical directions. The HLS is a candidate for measuring the vertical alignment but the amplitude of the tidal effect is approximately +/-20 m over200 m, making it necessary to take into account this long baseline phenomenon for the instrument to meet the CLIC requirements.This doctoral thesis is inspired by previous work on the long baseline tiltmeters and describes the effects measured by HLS in order to classify the measured phenomena according to whether they could produce a misalignment of a particle accelerator or not. Finally, the tools and models to predict those effects that are well understood are used to anticipate the different signals measured by HLS installed at CERN.STRASBOURG-Bib.electronique 063 (674829902) / SudocSudocFranceF
    corecore