27,528 research outputs found

    An effective scanning method of the NMSSM parameter space

    Get PDF
    The next-to-minimal supersymmetric standard model (NMSSM) naturally provides a 125 GeV Higgs boson without the need for large loop corrections from multi-TeV stop quarks. Furthermore, the NMSSM provides an electroweak scale dark matter candidate consistent with all experimental data, like relic density and non-observation of direct dark matter signals with the present experimental sensitivity. However, more free parameters are introduced in the NMSSM, which are strongly correlated. A simple parameter scan without knowing the correlation matrix is not efficient and can miss significant regions of the parameter space. We introduce a new technique to sample the NMSSM parameter space, which takes into account the correlations. For this we project the 7D NMSSM parameter space onto the 3D Higgs boson mass parameter space. The reduced dimensionality allows for a non-random sampling and therefore a complete coverage of the allowed NMSSM parameters. In addition, the parameter correlations and possible deviations of the signal strengths of the observed 125 Higgs boson from the SM values are easily predicted.Comment: 15 pages, 5 figure

    ROSAT Detection and High Precision Localization of X-ray Sources in the November 19, 1978 Gamma-Ray Burst Error Box

    Get PDF
    We report on observations of the 1978, November 19 Gamma-Ray Burst source, performed with the ROSAT X-ray HRI experiment. Two sources were detected, one of which is possibly variable. The latter source is identical to the source discovered in 1981 by the EINSTEIN satellite, and recently detected by ASCA. The precise localization of these sources is given, and our data are compared with optical, radio and previous X-ray data.Comment: 10 pages with 2 figures, Accepted for publication in the Astrophysical Journal (Letters), Latex, aastex macros neede

    A new Determination of the Extragalactic Background of Diffuse Gamma Rays taking into account Dark Matter Annihilation

    Full text link
    The extragalactic background (EGB) of diffuse gamma rays can be determined by subtracting the Galactic contribution from the data. This requires a Galactic model (GM) and we include for the first time the contribution of dark matter annihilation (DMA), which was previously proposed as an explanation for the EGRET excess of diffuse Galactic gamma rays above 1 GeV. In this paper it is shown that the newly determined EGB shows a characteristic high energy bump on top of a steeply falling soft contribution. The bump is shown to be compatible with a contribution from an extragalactic DMA signal from weakly interacting massive particles (WIMPs) with a mass between 50 and 100 GeV in agreement with the EGRET excess of the Galactic diffuse gamma rays and in disagreement with earlier analysis. The remaining soft contribution of the EGB is shown to resemble the spectra of the observed point sources in our Galaxy.Comment: 7 pages, 4 figures. Accepted by A&A, made Fig. 4 and table 1 consisten

    Flexible Automatic Scheduling For Autonomous Telescopes: The MAJORDOME

    Full text link
    We have developped a new method for the scheduling of astronomical automatic telescopes, in the framework of the autonomous TAROT instrument. The MAJORDOME software can handle a variety of observations, constrained, periodic, etc., and produces a timeline for the night, which may be modified at any time to take into account the specific conditions of the night. The MAJORDOME can also handle target of opportunity observations without delay.Comment: 16 pages, 6 figures, to appear in Experimental Astronom

    The impact of a 126 GeV Higgs on the neutralino mass

    Get PDF
    We highlight the differences of the dark matter sector between the constrained minimal supersymmetric SM (CMSSM) and the next-to-minimal supersymmetric SM (NMSSM) including the 126 GeV Higgs boson using GUT scale parameters. In the dark matter sector the two models are quite orthogonal: in the CMSSM the WIMP is largely a bino and requires large masses from the LHC constraints. In the NMSSM the WIMP has a large singlino component and is therefore independent of the LHC SUSY mass limits. The light NMSSM neutralino mass range is of interest for the hints concerning light WIMPs in the Fermi data. Such low mass WIMPs cannot be explained in the CMSSM. Furthermore, prospects for discovery of XENON1T and LHC at 14 TeV are given.Comment: 18 pages, 5 figures, this version is accepted by PLB after modifications including additional figure

    Can we discover a light singlet-like NMSSM Higgs boson at the LHC?

    Get PDF
    In the next-to minimal supersymmetric standard model (NMSSM) one additional singlet-like Higgs boson with small couplings to standard model (SM) particles is introduced. Although the mass can be well below the discovered 125 GeV Higgs boson mass its small couplings may make a discovery at the LHC difficult. We use a novel scanning technique to efficiently scan the whole parameter space and determine the range of cross sections and branching ratios for the light singlet-like Higgs boson below 125 GeV. This allows to determine the perspectives for the future discovery potential at the LHC. Specific LHC benchmark points are selected representing the salient NMSSM features.Comment: 22 pages, 5 figures, this version is accepted by PLB after minor modification

    Production and annealing of intrinsic defects in X-Ray irradiated CdS single crystals

    Get PDF
    Production and annealing of intrinsic defects in X-ray irradiated cadmium sulfide single crystal

    Differential chemical abundance analysis of a 47 Tuc AGB star with respect to Arcturus

    Full text link
    This study resolves a discrepancy in the abundance of Zr in the 47 Tucanae asymptotic giant branch star Lee 2525. This star was observed using the echelle spectrograph on the 2.3 m telescope at Siding Spring Observatory. The analysis was undertaken by calibrating Lee 2525 with respect to the standard giant star Arcturus. This work emphasises the importance of using a standard star with stellar parameters comparable to the star under analysis rather than a calibration with respect to the Sun (Koch & McWilliam 2008). Systematic errors in the analysis process are then minimised due to the similarity in atmospheric structure between the standard and programme stars. The abundances derived for Lee 2525 were found to be in general agreement with the Brown & Wallerstein (1992) values except for Zr. In this study Zr has a similar enhancement ([Zr/Fe] = +0.51 dex) to another light s-process element, Y ([Y/Fe] = +0.53 dex), which reflects current theory regarding the enrichment of s-process elements by nuclear processes within AGB stars (Busso et al. 2001). This is contrary to the results of Brown & Wallerstein (1992) where Zr was under-abundant ([Zr/Fe] = +0.51 dex) and Y was over-abundant ([Y/Fe] = +0.50 dex) with respect to Fe.Comment: 11 pages, 5 figures Accepted for publication in MNRA
    corecore