19 research outputs found

    Current status of Dutch drinking water sources

    No full text
    In Nederland wordt drinkwater gemaakt van grond- en oppervlaktewater. Het RIVM heeft in kaart gebracht wat de kwaliteit van het water van deze bronnen is en hoeveel er beschikbaar is om drinkwater van te maken. Beleidsmakers van het ministerie van Infrastructuur en Waterstaat (IenW) gebruiken de resultaten voor nieuw beleid. In meer dan de helft van de 216 winningen in Nederland zijn nu, of in de nabije toekomst, problemen met de waterkwaliteit of de beschikbare hoeveelheid. In 135 van de winningen worden namelijk stoffen gevonden die dit ongezuiverde water vervuilen. Door de droogte van de laatste jaren is het minder vanzelfsprekend geworden dat er in sommige seizoenen genoeg water is. Ook zorgt de droogte ervoor dat de concentraties vervuilende stoffen hoger zijn. Hierdoor moeten drinkwaterbedrijven meer doen om er schoon drinkwater van te maken. Waterschappen, provincies en gemeenten en de Rijksoverheid hebben de afgelopen jaren veel gedaan om de kwaliteit van de drinkwaterbronnen te verbeteren. Maar de kwaliteit is nog niet zoals gewenst en is de afgelopen jaren niet merkbaar verbeterd. Het doel is om met eenvoudige zuiveringstechnieken drinkwater uit de bronnen te kunnen maken. Het kost tijd voordat een maatregel een effect heeft. Dat is een van de redenen waarom de effecten van de genomen maatregelen nog niet zichtbaar zijn bij de drinkwaterbronnen. Daarnaast worden de effecten niet op dezelfde manier gemonitord en vastgelegd als de gegevens over de waterwinningen. Meer zicht krijgen op de effecten is belangrijk om op tijd extra maatregelen te kunnen nemen als dit nodig is. Daarnaast is meer duidelijkheid nodig tussen de landelijke en decentrale overheden wie waarvoor verantwoordelijk is en wat partijen van elkaar kunnen verwachten. Zij hebben een belangrijke taak om de waterkwaliteit voor de toekomst veilig te stellen.Drinking water in the Netherlands is made from groundwater and surface water. RIVM has evaluated the water quality of these sources and how much is available for the production of drinking water. Policy makers of the Dutch Ministry of Infrastructure and Water Management will use the results of this evaluation for new policy. More than half of the 216 Dutch drinking water sources have or will have problems with water quality or quantity, currently or in the near future. Substances that pollute the raw water have been found in 135 drinking water sources. It has become less self-evident that there will be sufficient water in some seasons due to the increased drought of recent years. Concentrations of polluting substances might also increase due to droughts. The drinking water treatment facilities therefore have to put more effort into purifying the raw water. Waterboards, provinces, municipalities and the Government have done much over the last few years to improve the quality of the drinking water sources. It is however not good enough and has not improved significantly in recent years. The goal is to produce drinking water from the sources with easy treatment technologies. It takes time before the effect of measures can be seen. This is one of the reasons why the effects of the measures taken are not visible yet at the drinking water sources. Furthermore, the effects are not monitored and recorded in the same way as the data on water sources. A better understanding on the effects is important in order to take additional measures in a timely manner when necessary. In addition, more clarity is needed on the responsibilities of the national and regional governments, who is responsible for what, and what these parties can expect from each other. They have an important duty to secure the water quality for the future.Ministerie van I&

    Mapping and Assessment of Ecosystems and their Services; Soil ecosystems

    No full text
    This report is developed in the context of the Soils4EU service contract and the MAES Soil Pilot. Working documents from the MAES Soil Pilot working group are (partly) integrated in this report.Soil ecosystem services, as all ecosystem services (ESS), are fundamental for meeting societal needs such as food and energy provision and for overcoming societal challenges like climate change mitigation and adaptation. The MAES (Mapping and Assessment on Ecosystems and their Services) Soil Pilot aims to increase awareness on the importance of soil functions and related ecosystem services and to show their value. The pilot shows the need for protection, management and restoration of soil ecosystems and the need to make a more sustainable and efficient use of it. In the context of the EU Biodiversity Strategy to 20201, the MAES Soil Pilot provides practical guidance and capacity building to the EU institutions and Member States on methods and tools for assessing soil ecosystem services

    Efeito do pH na adsorção e dessorção de cádmio em Latossolos brasileiros Effect of pH on cadmium adsorption and desorption in Brazilian Oxisols

    No full text
    Reações de adsorção e dessorção de metais em solos são influenciadas por atributos de superfície dos colóides e pela composição da solução no meio. Este estudo avaliou o efeito do pH sobre a adsorção (Cd ads) e dessorção (Cd des) de Cd em amostras do horizonte A de l7 Latossolos do Brasil. Amostras de cada solo foram suspensas em Ca(NO3)2 5 mmol L-1 (pH ajustado para 4,5; 5,5; e 6,5; relação solo:solução 1:67) e colocadas para reagir com Cd(NO3)2 0,20 mmol L-1 (relação solo:solução final 1:100) por 72 h. Imediatamente após a retirada do sobrenadante para determinação do Cd ads, adicionaram-se, ao resíduo remanescente, 25 mL de Ca(NO3)2 5 mmol L-1 para realização da dessorção do Cd adsorvido nas amostras de solo. Foi verificado um aumento na Cd ads de 1,3; 1,7 e 2,2 vezes decorrente da elevação do pH de 4,5 para 5,5; de 5,5 para 6,5 e de 4,5 para 6,5, respectivamente. Isso corresponde a uma percentagem de Cd adsorvido de 27 % em pH 4,5; 35 % em pH 5,5 e 55 % em pH 6,5. O efeito dos atributos dos solos sobre a adsorção de Cd só foi evidenciado em pH 5,5 e 6,5 por meio das correlações entre o Cd ads e a matéria orgânica, área superficial específica (SE), CTC a pH 7,0 (CTC), teores de caulinita, hematita, Fe2O3 extraído pelo oxalato ácido de amônio e argila, dentre outros atributos. Todavia, apenas a CTC e o conteúdo de argila, em pH 5,5, e a SE, em pH 6,5, foram incluídos no modelo de predição de Cd ads obtidos por meio de análises de regressão múltipla. A adsorção em valores de pH mais elevados não propiciou redução no Cd des, o qual se situou em torno de 20 % para pH 4,5 e 40 % para pH 5,5 e 6,5. A baixa proporção de Cd adsorvido por estes Latossolos, principalmente em menores valores de pH, reforça a necessidade da adoção de critérios adequados quando do uso ou descarte de resíduos que contêm Cd em áreas agrícolas ou próximas a aqüíferos.<br>Adsorption and desorption reactions of metals in soils are influenced by the surface of the soil colloid attributes and solution composition. This study evaluated the effect of the pH on Cd adsorption (Cd ads) and desorption (Cd des) in l7 Brazilian Oxisol samples that differed in their chemical, physical and mineralogical attributes. Samples of each soil, suspended in 5 mmol L-1 Ca(NO3)2 (pH adjusted to 4.5; 5.5, and 6.5; ratio soil:solution 1:67) were placed to react with 0.20 mmol L-1 Cd(NO3)2 (final ratio soil:solution 1:100) for 72 h, after which they were centrifuged and the Cd concentration of the solution determined. Thereafter, 25 mL of 5 mmol L-1 Ca(NO3)2 were added to the remaining residue to desorb the Cd retained in the soil samples. An increase of the pH solution from 4.5 to 5.5, from 4.5 to 6.5 and from 5.5 to 6.5 caused a 1.3; 2.2 and 1.7-fold increase in the Cd adsorption, respectively. The mean percentage of Cd adsorbed (Cd%ads) was 27 (pH 4.5), 35 (pH 5.5) and 55% (pH 6.5). The effect of soil attributes on Cd ads was only evidenced at a pH of 5.5 and 6.5, by the correlations between Cd ads and the soil organic matter, specific superficial area (SSA), CEC at pH 7.0 (CEC), kaolinite, hematite, oxalate-and-DCB-Fe and clay contents. However, only CEC and clay content, at pH 5.5 and the SSA, at pH 6.5, were included in the model of Cd ads prediction, obtained through regression analyses. The adsorption in values of higher pH did not propitiate reduction in Cd des, which was around 20% for pH 4.5 and 40% for pH 5.5 and 6.5. The small proportions of Cd adsorbed by these Oxisols, mainly at lower pH values, which are an indication of high mobility and bioavailability, reinforces the need for the adoption of appropriate criteria to use or discard residues containing Cd in agricultural areas or close to aquifers
    corecore