525 research outputs found

    Nuclear star cluster formation in energy-space

    Full text link
    In a virialized stellar system, the mean-square velocity is a direct tracer of the energy per unit mass of the system. Here, we exploit this to estimate and compare root-mean-square velocities for a large sample of nuclear star clusters and their host (late- or early-type) galaxies. Traditional observables, such as the radial surface brightness and second-order velocity moment profiles, are subject to short-term variations due to individual episodes of matter infall and/or star formation. The total mass, energy and angular momentum, on the other hand, are approximately conserved. Thus, the total energy and angular momentum more directly probe the formation of galaxies and their nuclear star clusters, by offering access to more fundamental properties of the nuclear cluster-galaxy system than traditional observables. We find that there is a strong correlation, in fact a near equality, between the root-mean-square velocity of a nuclear star cluster and that of its host. Thus, the energy per unit mass of a nuclear star cluster is always comparable to that of its host galaxy. We interpret this as evidence that nuclear star clusters do not form independently of their host galaxies, but rather that their formation and subsequent evolution are coupled. We discuss how our results can potentially be used to offer a clear and observationally testable prediction to distinguish between the different nuclear star cluster formation scenarios, and/or quantify their relative contributions.Comment: 12 pages, 3 figures, 4 tables; accepted for publication in MNRA

    Анализ систем оценки информационно коммуникационных компетенций

    Get PDF
    The article considers the methods of development of information-analytical system of formation of information-communicative competence of students through the portal of "Electronic University of information technology"

    Explaining two circumnuclear star forming rings in NGC5248

    Full text link
    The distribution of gas in the central kiloparsec of a galaxy has a dynamically rapid evolution. Nonaxisymmetries in the gravitational potential of the galactic disk, such as a large scale stellar bar or spiral, can lead to significant radial motion of gaseous material from larger radii to the central region. The large influx of gas and the subsequent star formation keep the central region constantly changing. However, the ability of gas to reach the nucleus proper to fuel an AGN phase is not guaranteed. Gas inflow can be halted at a circumnuclear star forming ring several hundred parsec away. The nearby galaxy NGC5248 is especially interesting in this sense since it is said to host 2 circumnuclear star forming rings at 100pc and 370pc from its quiescent nucleus. Here we present new subarcsecond PdBI+30m CO(2-1) emission line observations of the central region. For the first time the molecular gas distribution at the smallest stellar ring is resolved into a gas ring, consistent with the presence of a quiescent nucleus. However, the molecular gas shows no ring structure at the larger ring. We combine analyses of the gaseous and stellar content in the central kiloparsec of this galaxy to understand the gas distribution and dynamics of this star forming central region. We discuss the probability of two scenarios leading to the current observations, given our full understanding of this system, and discuss whether there are really two circumnuclear star forming rings in this galaxy.Comment: Accepted for publication in A&A, 14pages + long tabl

    Graph-Based Approach to the Edit Distance Cryptanalysis of Irregularly Clocked Linear Feedback Shift Registers

    Get PDF
    This paper proposes a speed-up of a known-plaintext attack on some stream ciphers based on Linear Feedback Shift Registers (LFSRs). The algorithm consists of two basic steps: first, to guess the initial seed value of one of the LFSRs, and then to use the resulting binary sequence in order to deduce useful information about the cipher parameters. In particular, the proposed divide-and-conquer attack is based on a combination of graph-based techniques with edit distance concepts. While the original edit distance attack requires the exhaustive search over the set of all possible initial states of the involved LFSR, this work presents a new heuristic optimization that avoids the evaluation of an important number of initial states through the identification of the most promising branches of the search graph. The strongest aspects of the proposal are the facts that the obtained results from the attack are absolutely deterministic, and that many inconsistent initial states of the target LFSRs are recognized and avoided during search.This work was supported by the Spanish Ministry of Science and Innovation and European FEDER Fund under Project TIN2008-02236/TSI as well as by CDTI (Spain)and the companies INDRA, Unin Fenosa, Tecnobit, Visual Tool, Brainstorm, SAC and Technosafe under Project Cenit-HESPERIA.Peer reviewe

    Chandra Observations of the Nuclear Star Cluster and Ultraluminous X-ray Sources in NGC 2139

    Full text link
    We report Chandra observations of the Scd galaxy NGC 2139, which is known to host a recently formed (10^7.6 yrs) nuclear star cluster. The star cluster is undetected in X-rays, with an upper bound on 0.5-7 keV luminosity of L_X < 7.1 x 10^37 erg/s. This bound implies a bolometric accretion luminosity <0.3 percent of the Eddington luminosity for a black hole with the mass (approximately 3400 M_sun) expected from extrapolation of the M-sigma relation. The lack of X-ray emission indicates that a black hole, if present, is not undergoing significant accretion at the current time. While the central cluster is undetected, the data reveal a substantial population of bright X-ray point sources elsewhere in this galaxy, with eight qualifying as ultraluminous X-ray sources with L_X > 10^39 erg/s. We use archival Hubble Space Telescope images to identify candidate optical counterparts for seven Chandra sources, which in most cases have optical luminosities and spatial profiles consistent with star clusters. Compared with other galaxies, the number of luminous X-ray sources in NGC 2139 is larger by a factor of 4 - 10 than expected based on its present star formation rate and stellar mass. This finding can be understood if NGC 2139 has concluded a burst of star formation in the recent past, and suggests that this galaxy could be important for testing the use of X-ray source populations as a chronometer of star formation history.Comment: 17 pages, 3 figures, accepted for publication in A
    corecore