294 research outputs found

    Molecules with a peptide link in protostellar shocks: a comprehensive study of L1157

    Full text link
    Interstellar molecules with a peptide link -NH-C(=O)-, like formamide (NH2_2CHO), acetamide (NH2_2COCH3_3) and isocyanic acid (HNCO) are particularly interesting for their potential role in pre-biotic chemistry. We have studied their emission in the protostellar shock regions L1157-B1 and L1157-B2, with the IRAM 30m telescope, as part of the ASAI Large Program. Analysis of the line profiles shows that the emission arises from the outflow cavities associated with B1 and B2. Molecular abundance of ≈ (0.4−1.1)×10−8\approx~(0.4-1.1)\times 10^{-8} and (3.3−8.8)×10−8(3.3-8.8)\times 10^{-8} are derived for formamide and isocyanic acid, respectively, from a simple rotational diagram analysis. Conversely, NH2_2COCH3_3 was not detected down to a relative abundance of a few ≤10−10\leq 10^{-10}. B1 and B2 appear to be among the richest Galactic sources of HNCO and NH2_2CHO molecules. A tight linear correlation between their abundances is observed, suggesting that the two species are chemically related. Comparison with astrochemical models favours molecule formation on ice grain mantles, with NH2_2CHO generated from hydrogenation of HNCO.Comment: 11 pages, 9 figures. Accepted for publication in MNRAS Main Journal. Accepted 2014 August 19, in original form 2014 July

    Single and Double Photoionization and Photodissociation of Toluene by Soft X-rays in Circumstellar Environment

    Get PDF
    The formation of polycyclic aromatic hydrocarbons (PAHs) and their methyl derivatives occurs mainly in the dust shells of asymptotic giant branch (AGB) stars. The bands at 3.3 and 3.4 μ\mum, observed in infrared emission spectra of several objects, are attributed C-H vibrational modes in aromatic and aliphatic structures, respectively. In general, the feature at 3.3 μ\mum is more intense than the 3.4 μ\mum. Photoionization and photodissociation processes of toluene, the precursor of methylated PAHs, were studied using synchrotron radiation at soft X-ray energies around the carbon K edge with time-of-flight mass spectrometry. Partial ion yields of a large number of ionic fragments were extracted from single and 2D-spectra, where electron-ion coincidences have revealed the doubly charged parent-molecule and several doubly charged fragments containing seven carbon atoms with considerable abundance. \textit{Ab initio} calculations based on density functional theory were performed to elucidate the chemical structure of these stable dicationic species. The survival of the dications subjected to hard inner shell ionization suggests that they could be observed in the interstellar medium, especially in regions where PAHs are detected. The ionization and destruction of toluene induced by X-rays were examined in the T Dra conditions, a carbon-rich AGB star. In this context, a minimum photodissociation radius and the half-life of toluene subjected to the incidence of the soft X-ray flux emitted from a companion white dwarf star were determined.Comment: 11 pages, 4 figures, accept for publication in Ap

    Spin-3/2 random quantum antiferromagnetic chains

    Full text link
    We use a modified perturbative renormalization group approach to study the random quantum antiferromagnetic spin-3/2 chain. We find that in the case of rectangular distributions there is a quantum Griffiths phase and we obtain the dynamical critical exponent ZZ as a function of disorder. Only in the case of extreme disorder, characterized by a power law distribution of exchange couplings, we find evidence that a random singlet phase could be reached. We discuss the differences between our results and those obtained by other approaches.Comment: 4 page

    Ising Spin Glass in a Transverse Magnetic Field

    Full text link
    We study the three-dimensional quantum Ising spin glass in a transverse magnetic field following the evolution of the bond probability distribution under Renormalisation Group transformations. The phase diagram (critical temperature TcT_c {\em vs} transverse field Γ\Gamma) we obtain shows a finite slope near T=0T=0, in contrast with the infinite slope for the pure case. Our results compare very well with the experimental data recently obtained for the dipolar Ising spin glass LiHo0.167_{0.167}Y0.833_{0.833}F4_4, in a transverse field. This indicates that this system is more apropriately described by a model with short range interactions than by an equivalent Sherrington-Kirkpatrick model in a transverse field.Comment: 7 pages, RevTeX3, Nota Cientifica PUC-Rio 23/9

    Phase diagram of the random Heisenberg antiferromagnetic spin-1 chain

    Full text link
    We present a new perturbative real space renormalization group (RG) to study random quantum spin chains and other one-dimensional disordered quantum systems. The method overcomes problems of the original approach which fails for quantum random chains with spins larger than S=1/2. Since it works even for weak disorder we are able to obtain the zero temperature phase diagram of the random antiferromagnetic Heisenberg spin-1 chain as a function of disorder. We find a random singlet phase for strong disorder and as disorder decreases, the system shows a crossover from a Griffiths to a disordered Haldane phase.Comment: 4 pages, 10 figure

    Role of Disorder on the Quantum Critical Point of a Model for Heavy Fermions

    Full text link
    A zero temperature real space renormalization group (RG) approach is used to investigate the role of disorder near the quantum critical point (QCP) of a Kondo necklace (XY-KN) model. In the pure case this approach yields Jc=0J_{c}=0 implying that any coupling J≠0J \not = 0 between the local moments and the conduction electrons leads to a non-magnetic phase. We also consider an anisotropic version of the model (X−KNX-KN), for which there is a quantum phase transition at a finite value of the ratio between the coupling and the bandwidth, (J/W)(J/W). Disorder is introduced either in the on-site interactions or in the hopping terms. We find that in both cases randomness is irrelevant in the X−KNX-KN model, i.e., the disorder induced magnetic-non-magnetic quantum phase transition is controlled by the same exponents of the pure case. Finally, we show the fixed point distributions PJ(J/W)P_{J}(J/W) at the atractors of the disordered, non-magnetic phases.Comment: 5 pages, 3 figure

    Percolation Transition in the random antiferromagnetic spin-1 chain

    Full text link
    We give a physical description in terms of percolation theory of the phase transition that occurs when the disorder increases in the random antiferromagnetic spin-1 chain between a gapless phase with topological order and a random singlet phase. We study the statistical properties of the percolation clusters by numerical simulations, and we compute exact exponents characterizing the transition by a real-space renormalization group calculation.Comment: 9 pages, 4 encapsulated Postscript figures, REVTeX 3.
    • …
    corecore