40 research outputs found

    Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3

    Full text link
    Missense mutations in the CIAS1 gene cause three autoinflammatory disorders: familial cold autoinflammatory syndrome, Muckle-Wells syndrome and neonatal-onset multiple-system inflammatory disease(1). Cryopyrin (also called Nalp3), the product of CIAS1, is a member of the NOD-LRR protein family that has been linked to the activation of intracellular host defence signalling pathways(2,3). Cryopyrin forms a multi-protein complex termed 'the inflammasome', which contains the apoptosis-associated speck-like protein (ASC) and caspase-1, and promotes caspase-1 activation and processing of pro-interleukin (IL)-1 beta (ref. 4). Here we show the effect of cryopyrin deficiency on inflammasome function and immune responses. Cryopyrin and ASC are essential for caspase-1 activation and IL-1 beta and IL-18 production in response to bacterial RNA and the imidazoquinoline compounds R837 and R848. In contrast, secretion of tumour-necrosis factor-alpha and IL-6, as well as activation of NF-kappa B and mitogen-activated protein kinases (MAPKs) were unaffected by cryopyrin deficiency. Furthermore, we show that Toll-like receptors and cryopyrin control the secretion of IL-1 beta and IL-18 through different intracellular pathways. These results reveal a critical role for cryopyrin in host defence through bacterial RNA-mediated activation of caspase-1, and provide insights regarding the pathogenesis of autoinflammatory syndromes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62569/1/nature04517.pd

    Immunotoxicity and intestinal effects of nano- and microplastics: a review of the literature

    No full text
    Background Together with poor biodegradability and insufficient recycling, the massive production and use of plastics have led to widespread environmental contamination by nano- and microplastics. These particles accumulate across ecosystems - even in the most remote habitats - and are transferred through food chains, leading to inevitable human ingestion, that adds to the highest one due to food processes and packaging. Objective The present review aimed at providing a comprehensive overview of current knowledge regarding the effects of nano- and microplastics on intestinal homeostasis. Methods We conducted a literature search focused on the in vivo effects of nano- and microplastics on gut epithelium and microbiota, as well as on immune response. Results Numerous animal studies have shown that exposure to nano- and microplastics leads to impairments in oxidative and inflammatory intestinal balance, and disruption of the gut’s epithelial permeability. Other notable effects of nano- and microplastic exposure include dysbiosis (changes in the gut microbiota) and immune cell toxicity. Moreover, microplastics contain additives, adsorb contaminants, and may promote the growth of bacterial pathogens on their surfaces: they are potential carriers of intestinal toxicants and pathogens that can potentially lead to further adverse effects. Conclusion Despite the scarcity of reports directly relevant to human, this review brings together a growing body of evidence showing that nano- and microplastic exposure disturbs the gut microbiota and critical intestinal functions. Such effects may promote the development of chronic immune disorders. Further investigation of this threat to human health is warranted

    Gut: An underestimated target organ for Aluminum

    No full text
    International audienc

    Review article: epidemiological and animal evidence for the role of air pollution in intestinal diseases

    No full text
    International audienceBACKGROUND: Ambient air pollution is recognized as one of the leading causes of global burden of disease. Involvement of air pollution in respiratory and cardiovascular diseases was first recognized, and then cumulative data has indicated that the intestinal tract could be also damaged.OBJECTIVE: To review and discuss the current epidemiological and animal data on the effects of air pollution on intestinal homeostasis.METHODS: An extensive literature search was conducted using Google Scholar and Pubmed to gather relevant human and animal studies that have reported the effects of any air pollutant on the intestine.RESULTS: Exposure to several gaseous and particulate matter components of air pollution have been associated either positively or negatively with the onset of various intestinal diseases including appendicitis, gastroenteric disorders, irritable bowel syndrome, inflammatory bowel diseases, and peptic ulcers. Several atmospheric pollutants have been associated with modifications of gut microbiota in humans. Animal studies have showed that inhalation of atmospheric particulate matter can lead to modifications of gut microbiota, impairments of oxidative and inflammatory intestinal balances, and disruption of gut epithelial permeability.CONCLUSIONS: Overall, the literature appears to indicate that the gut is an underestimated target of adverse health effects induced by air pollution. It is therefore important to develop additional studies that aim to better understand the link between air pollutants and gastro-intestinal diseases

    IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation

    No full text
    Colorectal cancer is a leading cause of cancer-related deaths worldwide. Chronic inflammation is recognized as a predisposing factor for the development of colon cancer, but the molecular mechanisms linking inflammation and tumorigenesis have remained elusive. Recent studies revealed a crucial role for the NOD-like receptor protein Nlrp3 in regulating inflammation through the assembly of proinflammatory protein complexes termed inflammasomes. However, its role in colorectal tumor formation remains unclear. In this study, we showed that mice deficient for Nlrp3 or the inflammasome effector caspase-1 were highly susceptible to azoxymethane/dextran sodium sulfate-induced inflammation and suffered from dramatically increased tumor burdens in the colon. This was a consequence of markedly reduced IL-18 levels in mice lacking components of the Nlrp3 inflammasome, which led to impaired production and activation of the tumor suppressors IFN-gamma and STAT1, respectively. Thus, IL-18 production downstream of the Nlrp3 inflammasome is critically involved in protection against colorectal tumorigenesis

    Recent advances in the development of selective CB(2) agonists as promising anti-inflammatory agents.

    No full text
    International audienceThe high distribution of CB(2) receptors in immune cells suggests their important role in the control of inflammation. Growing evidence offers this receptor as an attractive therapeutic target: CB(2) selective agonists are able to modulate inflammation without triggering psychotropic effects. This review will summarize the literature on the implication of CB(2) in inflammation and CB(2) selective agonists with anti-inflammatory activity

    Does oral exposure to cadmium and lead mediate susceptibility to colitis? The dark-and-bright sides of heavy metals in gut ecology

    No full text
    International audienceAlthough the heavy metals cadmium (Cd) and lead (Pb) are known environmental health concerns, their long-term impacts on gut ecology and susceptibility to gastrointestinal autoimmune diseases have not been extensively investigated. We sought to determine whether subchronic oral exposure to Cd or Pb is a risk factor for the development and progression of inflammatory bowel disease (IBD). Mice were exposed to various doses of CdCl2 or PbCl2 in drinking water for 1, 4 or 6 weeks prior to infection with Salmonella, the induction of colitis with dextran sodium sulfate (DSS) or trinitrobenzene sulfonic acid (TNBS). In human cell-based models, exposure to Cd and Pb is associated with reduced transepithelial electric resistance and changes in bacteria-induced cytokine responses. Although 1- and 6-week exposures did not have clear effects on the response to Salmonella infectious challenges, 1-week short-term treatments with CdCl2 tended to enhance intestinal inflammation in mice. Unexpectedly, subchronic exposure to Cd and (to a lesser extent) Pb significantly mitigated some of the symptoms of DSS-induced colitis and reduced the severity of TNBS colitis in a dose-dependent manner. The possible adaptive and immunosuppressive mechanisms by which heavy metals might reduce intestinal inflammation are explored and discussed
    corecore